In [1]:
# Jupyter Data Science Workflow
In [2]:
import matplotlib.pyplot as plt
plt.style.use('seaborn')
In [3]:
from jupyter_workflow.data import get_fremont_data
In [ ]:
In [4]:
data = get_fremont_data()
data.head()
Out[4]:
In [5]:
data.info()
In [6]:
data.info()
In [7]:
%matplotlib inline
data.resample('W').sum().plot();
In [8]:
data.resample('W').sum().plot()
Out[8]:
In [9]:
data['Total'] = data['West'] + data['East'];
ax = data.resample('D').sum().rolling(365).sum().plot()
ax.set_ylim(0,None)
Out[9]:
In [10]:
data.head()
Out[10]:
In [11]:
data
Out[11]:
In [12]:
data.groupby(data.index.time).mean().plot()
Out[12]:
In [13]:
pivoted = data.pivot_table('Total',index=data.index.time,columns=data.index.date)
pivoted.iloc[:5,:5]
Out[13]:
In [15]:
pivoted.plot(legend=False,alpha=0.01);
In [ ]: