In [1]:
import pandas

In [2]:
%cd D:\kmc400-braviz\tracula_group


D:\kmc400-braviz\tracula_group

In [3]:
import glob
from os import path

In [8]:
files = glob.glob("*.csv")

In [9]:
valid_ids=[ 8, 9, 15, 25, 29, 31, 35, 44, 51, 53, 54, 56, 64, 65, 69, 75, 83, 90, 93, 95, 107, 108, 113, 119, 121, 123, 124, 125, 128, 129, 134, 138, 141, 143, 144, 145, 149, 151, 153, 154, 156, 157, 161, 165, 172, 173, 175, 176, 177, 182, 185, 186, 195, 197, 198, 201, 202, 205, 208, 210, 212, 216, 219, 221, 225, 227, 230, 231, 232, 235, 237, 253, 256, 261, 263, 264, 266, 277, 288, 292, 293, 300, 301, 304, 307, 310, 313, 314, 319, 320, 322, 327, 331, 332, 333, 344, 346, 348, 353, 355, 356, 357, 358, 364, 369, 371, 374, 381, 390, 396, 399, 402, 409, 413, 416, 417, 423, 424, 426, 427, 429, 431, 432, 440, 452, 456, 458, 464, 469, 472, 478, 480, 483, 484, 485, 491, 496, 499, 504, 517, 526, 532, 535, 536, 537, 542, 544, 545, 547, 548, 549, 552, 566, 568, 576, 577, 579, 580, 592, 593, 595, 598, 599, 600, 602, 610, 611, 615, 616, 619, 623, 625, 630, 631, 645, 650, 651, 662, 665, 670, 675, 678, 684, 686, 689, 691, 694, 696, 712, 715, 734, 739, 752, 754, 761, 765, 769, 783, 784, 786, 789, 790, 791, 795, 804, 806, 815, 818, 821, 829, 840, 841, 848, 850, 861, 863, 868, 869, 874, 876, 877, 878, 879, 884, 891, 892, 893, 894, 898, 905, 906, 912, 913, 914, 918, 928, 934, 935, 939, 940, 942, 953, 954, 966, 971, 982, 984, 992, 994, 996, 1005, 1006, 1021, 1026, 1039, 1049, 1076, 1077, 1212, 1213, 1218, 1221, 1224, 1227, 1232, 1234, 1237, 1239, 1242, 1244, 1247, 1249, 1251, 1253, 1260, 1262, 1265, 1267, 1268, 1269, 1271, 1278, 1283, 1291, 1304, 1318, 1320, 1322, 1326, 1333, 1336, 1337, 1338, 1340, 1357,  ]

In [10]:
missing = {}
tables={}

In [12]:
for f0 in files:
    table = pandas.read_table(f0,index_col=0)
    missing[f0]=set(valid_ids)-set(table.index)
    table2 = table.loc[valid_ids]
    tables[f0]=table2

In [15]:
tables['lh.ccg_PP_avg33_mni_bbr.csv']


Out[15]:
Count Volume Len_Min Len_Max Len_Avg Len_Center AD_Avg AD_Avg_Weight AD_Avg_Center RD_Avg RD_Avg_Weight RD_Avg_Center MD_Avg MD_Avg_Weight MD_Avg_Center FA_Avg FA_Avg_Weight FA_Avg_Center
8 1500 128 30 58 42.6507 42 0.001416 0.001456 0.001429 0.000488 0.000453 0.000455 0.000797 0.000787 0.000779 0.616996 0.654800 0.642310
9 1500 91 29 57 41.1707 42 0.001429 0.001473 0.001472 0.000394 0.000359 0.000415 0.000739 0.000730 0.000767 0.688158 0.723214 0.672019
15 1500 70 25 53 38.2793 39 0.001564 0.001663 0.001652 0.000461 0.000428 0.000424 0.000829 0.000840 0.000833 0.652265 0.696273 0.699631
25 1500 98 29 64 46.0300 43 0.001263 0.001294 0.001276 0.000426 0.000395 0.000417 0.000705 0.000695 0.000703 0.613787 0.649899 0.617349
29 1500 124 30 55 41.9660 43 0.001450 0.001472 0.001509 0.000439 0.000412 0.000419 0.000776 0.000765 0.000782 0.649307 0.676854 0.688193
31 1500 132 28 57 40.0147 41 0.001294 0.001322 0.001352 0.000430 0.000416 0.000412 0.000718 0.000718 0.000725 0.616900 0.639135 0.646294
35 1500 165 29 62 43.4380 43 0.001301 0.001322 0.001309 0.000484 0.000457 0.000457 0.000756 0.000746 0.000741 0.564375 0.593948 0.592982
44 1500 113 30 61 41.9413 42 0.001412 0.001440 0.001426 0.000452 0.000422 0.000404 0.000772 0.000761 0.000745 0.633227 0.664593 0.673109
51 1500 119 26 55 40.8560 42 0.001243 0.001265 0.001265 0.000465 0.000426 0.000438 0.000724 0.000706 0.000713 0.569910 0.611174 0.605886
53 1500 163 32 64 45.5940 42 0.001524 0.001564 0.001629 0.000315 0.000291 0.000266 0.000718 0.000715 0.000721 0.762551 0.788771 0.818432
54 1500 71 29 53 40.4713 41 0.001341 0.001385 0.001348 0.000482 0.000449 0.000463 0.000768 0.000761 0.000758 0.589001 0.629710 0.602957
56 1500 116 28 63 45.4260 43 0.001454 0.001503 0.001477 0.000438 0.000404 0.000457 0.000777 0.000770 0.000797 0.654350 0.690566 0.637870
64 1500 137 26 62 40.7053 38 0.001449 0.001486 0.001444 0.000488 0.000455 0.000417 0.000808 0.000799 0.000759 0.606196 0.641689 0.664431
65 1500 107 28 56 40.1027 39 0.001342 0.001360 0.001327 0.000407 0.000376 0.000392 0.000719 0.000704 0.000704 0.656453 0.686659 0.661683
69 1500 82 26 53 37.3327 36 0.001382 0.001415 0.001400 0.000430 0.000419 0.000424 0.000748 0.000751 0.000750 0.640464 0.657040 0.648262
75 1500 85 25 55 38.1627 39 0.001375 0.001411 0.001390 0.000387 0.000374 0.000347 0.000716 0.000719 0.000695 0.676549 0.694313 0.712707
83 1500 114 29 58 40.7213 42 0.001454 0.001495 0.001477 0.000371 0.000340 0.000337 0.000732 0.000725 0.000717 0.705950 0.738896 0.736724
90 1500 120 28 56 40.7873 41 0.001258 0.001295 0.001347 0.000440 0.000422 0.000432 0.000713 0.000713 0.000737 0.591148 0.617272 0.627807
93 1500 143 28 57 36.3427 32 0.001373 0.001422 0.001387 0.000500 0.000474 0.000438 0.000791 0.000790 0.000755 0.583713 0.617133 0.641505
95 1500 130 34 57 43.9853 43 0.001292 0.001334 0.001364 0.000413 0.000390 0.000397 0.000706 0.000705 0.000719 0.630808 0.659170 0.661555
107 1500 124 30 56 42.3347 42 0.001458 0.001498 0.001468 0.000401 0.000377 0.000389 0.000754 0.000750 0.000749 0.675950 0.705998 0.691718
108 1500 107 27 51 36.5707 36 0.001400 0.001428 0.001439 0.000414 0.000395 0.000408 0.000743 0.000739 0.000751 0.663282 0.684593 0.673677
113 1500 152 29 59 40.6907 42 0.001441 0.001493 0.001453 0.000358 0.000330 0.000326 0.000719 0.000717 0.000702 0.715933 0.745760 0.747295
119 1500 111 28 59 44.0367 43 0.001327 0.001362 0.001384 0.000433 0.000411 0.000405 0.000731 0.000728 0.000731 0.627869 0.654271 0.659771
121 1500 131 25 57 40.3187 42 0.001421 0.001448 0.001388 0.000427 0.000396 0.000424 0.000758 0.000747 0.000745 0.649399 0.682041 0.647251
123 1500 71 31 58 41.9473 44 0.001282 0.001308 0.001291 0.000535 0.000524 0.000545 0.000784 0.000786 0.000793 0.532017 0.551334 0.523261
124 1500 98 27 56 38.9880 40 0.001311 0.001338 0.001356 0.000419 0.000399 0.000425 0.000717 0.000712 0.000735 0.620525 0.648530 0.637357
125 1500 117 26 56 39.9667 40 0.001256 0.001299 0.001301 0.000480 0.000444 0.000456 0.000739 0.000729 0.000738 0.566091 0.609728 0.591983
128 1500 98 30 55 40.5107 42 0.001387 0.001411 0.001432 0.000451 0.000434 0.000447 0.000763 0.000759 0.000775 0.629579 0.650245 0.648668
129 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1234 1500 106 29 64 43.5427 43 0.001361 0.001389 0.001441 0.000327 0.000313 0.000332 0.000672 0.000671 0.000702 0.723559 0.742119 0.735876
1237 1500 191 33 61 45.8493 43 0.001391 0.001432 0.001424 0.000498 0.000466 0.000457 0.000796 0.000788 0.000779 0.592641 0.629204 0.637359
1239 1500 198 31 58 46.0500 43 0.001397 0.001489 0.001571 0.000491 0.000447 0.000410 0.000793 0.000794 0.000797 0.586163 0.645129 0.696459
1242 1500 117 27 57 41.2447 41 0.001421 0.001482 0.001503 0.000438 0.000415 0.000419 0.000766 0.000770 0.000780 0.641815 0.673823 0.671325
1244 1500 123 26 53 35.7927 34 0.001429 0.001469 0.001496 0.000441 0.000423 0.000402 0.000770 0.000771 0.000766 0.643802 0.667531 0.692659
1247 1500 181 32 62 47.1787 48 0.001380 0.001400 0.001401 0.000450 0.000420 0.000377 0.000760 0.000747 0.000718 0.620019 0.647803 0.682232
1249 1500 123 34 65 45.4547 43 0.001555 0.001640 0.001701 0.000452 0.000420 0.000414 0.000820 0.000827 0.000843 0.660543 0.700175 0.719080
1251 1500 131 32 58 41.8140 41 0.001339 0.001392 0.001428 0.000426 0.000405 0.000415 0.000730 0.000734 0.000753 0.636975 0.667243 0.666908
1253 1500 133 28 53 40.3993 42 0.001296 0.001343 0.001314 0.000440 0.000415 0.000432 0.000725 0.000725 0.000726 0.607494 0.640122 0.612593
1260 1500 139 30 56 40.4053 40 0.001423 0.001475 0.001476 0.000444 0.000431 0.000420 0.000770 0.000779 0.000772 0.637505 0.661183 0.670754
1262 1500 115 29 56 41.6340 42 0.001385 0.001448 0.001461 0.000442 0.000391 0.000371 0.000756 0.000744 0.000735 0.619040 0.676302 0.693251
1265 1500 144 29 58 42.0187 42 0.001425 0.001485 0.001530 0.000424 0.000395 0.000370 0.000758 0.000758 0.000757 0.648177 0.686587 0.715640
1267 1500 146 28 57 42.2160 42 0.001296 0.001363 0.001385 0.000436 0.000423 0.000431 0.000722 0.000737 0.000749 0.612925 0.644253 0.638837
1268 1500 143 30 57 42.5893 43 0.001378 0.001438 0.001432 0.000477 0.000446 0.000436 0.000777 0.000776 0.000768 0.591011 0.632295 0.638311
1269 1500 113 27 56 38.8880 40 0.001499 0.001570 0.001601 0.000511 0.000506 0.000490 0.000840 0.000860 0.000860 0.605283 0.625930 0.645694
1271 1500 118 28 52 36.7360 37 0.001324 0.001361 0.001341 0.000479 0.000446 0.000405 0.000761 0.000751 0.000717 0.579933 0.618162 0.651757
1278 1500 166 31 61 44.2527 44 0.001320 0.001373 0.001356 0.000522 0.000491 0.000488 0.000788 0.000785 0.000777 0.546224 0.586165 0.575852
1283 1500 154 31 56 42.2287 42 0.001296 0.001305 0.001199 0.000418 0.000383 0.000390 0.000711 0.000690 0.000660 0.633812 0.668528 0.627699
1291 1500 134 32 59 43.6813 43 0.001244 0.001257 0.001286 0.000448 0.000422 0.000423 0.000713 0.000700 0.000711 0.587644 0.616236 0.622277
1304 1500 178 28 65 42.2433 42 0.001341 0.001370 0.001389 0.000454 0.000429 0.000410 0.000750 0.000742 0.000737 0.602461 0.632537 0.653193
1318 1500 98 26 59 39.3107 32 0.001319 0.001358 0.001377 0.000449 0.000438 0.000464 0.000739 0.000745 0.000768 0.615183 0.630135 0.606457
1320 1500 143 30 64 43.1347 42 0.001388 0.001454 0.001448 0.000400 0.000348 0.000363 0.000729 0.000717 0.000725 0.664836 0.719526 0.700612
1322 1500 131 25 56 37.1927 37 0.001234 0.001287 0.001295 0.000530 0.000509 0.000510 0.000765 0.000768 0.000772 0.506442 0.539990 0.539770
1326 1500 121 30 55 41.9627 42 0.001443 0.001486 0.001487 0.000473 0.000444 0.000425 0.000796 0.000791 0.000779 0.626276 0.659045 0.671629
1333 1500 164 27 52 37.6387 39 0.001383 0.001424 0.001418 0.000470 0.000447 0.000424 0.000774 0.000773 0.000755 0.606080 0.634199 0.644139
1336 1500 139 28 52 39.6207 40 0.001494 0.001545 0.001541 0.000441 0.000407 0.000400 0.000792 0.000786 0.000780 0.653985 0.690703 0.690680
1337 1500 145 35 62 47.0820 49 0.001496 0.001564 0.001586 0.000370 0.000326 0.000323 0.000745 0.000739 0.000744 0.710506 0.756151 0.759047
1338 1500 182 27 67 45.1733 43 0.001373 0.001408 0.001452 0.000467 0.000432 0.000419 0.000769 0.000757 0.000763 0.610273 0.649927 0.669628
1340 1500 182 31 58 42.6067 42 0.001445 0.001502 0.001560 0.000430 0.000394 0.000373 0.000769 0.000763 0.000769 0.649195 0.689228 0.714941
1357 1500 104 29 60 42.4593 42 0.001324 0.001363 0.001339 0.000421 0.000405 0.000402 0.000722 0.000724 0.000714 0.641751 0.663053 0.654176

295 rows × 18 columns


In [16]:
missing


Out[16]:
{'fmajor_PP_avg33_mni_bbr.csv': {129},
 'fminor_PP_avg33_mni_bbr.csv': {129},
 'lh.atr_PP_avg33_mni_bbr.csv': {129},
 'lh.cab_PP_avg33_mni_bbr.csv': {129},
 'lh.ccg_PP_avg33_mni_bbr.csv': {129},
 'lh.cst_AS_avg33_mni_bbr.csv': {129},
 'lh.ilf_AS_avg33_mni_bbr.csv': {129},
 'lh.slfp_PP_avg33_mni_bbr.csv': {129},
 'lh.slft_PP_avg33_mni_bbr.csv': {129},
 'lh.unc_AS_avg33_mni_bbr.csv': {129},
 'rh.atr_PP_avg33_mni_bbr.csv': {129},
 'rh.cab_PP_avg33_mni_bbr.csv': {129},
 'rh.ccg_PP_avg33_mni_bbr.csv': {129},
 'rh.cst_AS_avg33_mni_bbr.csv': {129},
 'rh.ilf_AS_avg33_mni_bbr.csv': {129},
 'rh.slfp_PP_avg33_mni_bbr.csv': {129},
 'rh.slft_PP_avg33_mni_bbr.csv': {129},
 'rh.unc_AS_avg33_mni_bbr.csv': {129}}

In [73]:
tracula_names={
"lh.cst_AS": "Left corticospinal tract",
"rh.cst_AS": "Right corticospinal tract",
"lh.ilf_AS": "Left inferior longitudinal fasciculus",
"rh.ilf_AS": "Right inferior longitudinal fasciculus",
"lh.unc_AS": "Left uncinate fasciculus",
"rh.unc_AS": "Right uncinate fasciculus",
"fmajor_PP": "Corpus callosum-forceps major",
"fminor_PP": "Corpus callosum-forceps minor",
"lh.atr_PP": "Left anterior thalamic radiations",
"rh.atr_PP": "Right anterior thalamic radiations",
"lh.ccg_PP": "Left cingulum-cingulate gyrus endings",
"rh.ccg_PP": "Right cingulum-cingulate gyrus endings",
"lh.cab_PP": "Left cingulum-angular bundle",
"rh.cab_PP": "Right cingulum-angular bundle",
"lh.slfp_PP": "Left superior longitudinal fasciculus-parietal endings",
"rh.slfp_PP": "Right superior longitudinal fasciculus-parietal endings",
"lh.slft_PP": "Left superior longitudinal fasciculus-temporal endings",
"rh.slft_PP": "Right superior longitudinal fasciculus-temporal endings",
}

In [74]:
k=tables.keys()[0]

In [75]:
pretty_names = dict((k,tracula_names[k[:-18]]) for k in tables.keys())

In [76]:
pretty_names


Out[76]:
{'fmajor_PP_avg33_mni_bbr.csv': 'Corpus callosum-forceps major',
 'fminor_PP_avg33_mni_bbr.csv': 'Corpus callosum-forceps minor',
 'lh.atr_PP_avg33_mni_bbr.csv': 'Left anterior thalamic radiations',
 'lh.cab_PP_avg33_mni_bbr.csv': 'Left cingulum-angular bundle',
 'lh.ccg_PP_avg33_mni_bbr.csv': 'Left cingulum-cingulate gyrus endings',
 'lh.cst_AS_avg33_mni_bbr.csv': 'Left corticospinal tract',
 'lh.ilf_AS_avg33_mni_bbr.csv': 'Left inferior longitudinal fasciculus',
 'lh.slfp_PP_avg33_mni_bbr.csv': 'Left superior longitudinal fasciculus-parietal endings',
 'lh.slft_PP_avg33_mni_bbr.csv': 'Left superior longitudinal fasciculus-temporal endings',
 'lh.unc_AS_avg33_mni_bbr.csv': 'Left uncinate fasciculus',
 'rh.atr_PP_avg33_mni_bbr.csv': 'Right anterior thalamic radiations',
 'rh.cab_PP_avg33_mni_bbr.csv': 'Right cingulum-angular bundle',
 'rh.ccg_PP_avg33_mni_bbr.csv': 'Right cingulum-cingulate gyrus endings',
 'rh.cst_AS_avg33_mni_bbr.csv': 'Right corticospinal tract',
 'rh.ilf_AS_avg33_mni_bbr.csv': 'Right inferior longitudinal fasciculus',
 'rh.slfp_PP_avg33_mni_bbr.csv': 'Right superior longitudinal fasciculus-parietal endings',
 'rh.slft_PP_avg33_mni_bbr.csv': 'Right superior longitudinal fasciculus-temporal endings',
 'rh.unc_AS_avg33_mni_bbr.csv': 'Right uncinate fasciculus'}

In [77]:
pretty_tables=[]

In [78]:
for k,v in tables.items():
    cols = v.columns
    n=pretty_names[k].replace(" ","_")
    cols2=["TRAC_"+n+"_"+c for c in cols]
    table2=v[:]
    table2.columns = cols2
    pretty_tables.append(table2)

In [79]:
big_table=pretty_tables[0].join(pretty_tables[1:])

In [80]:
big_table.sort(axis=1,inplace=True)

In [81]:
big_table.to_excel("tracula.xlsx")

In [ ]: