In [1]:
import pandas

In [2]:
%cd C:\Users\da.angulo39\desktop


C:\Users\da.angulo39\desktop

In [12]:
file_name="other_fibs.csv"
excel_name=".".join(file_name.split(".")[:-1]+['xlsx'])

In [3]:
df = pandas.read_csv(file_name,index_col=0)

In [4]:
valid_subjs_mri=sorted([1026, 939, 9, 526, 15, 19, 535, 536, 537, 29, 542, 548, 549, 689, 552, 44, 861, 51, 1077, 566, 56, 576, 65, 579, 580, 69, 71, 592, 593, 83, 599, 600, 868, 602, 357, 610, 616, 619, 108, 623, 113, 630, 631, 121, 124, 125, 789, 128, 107, 876, 138, 651, 141, 143, 144, 145, 25, 665, 154, 156, 157, 670, 197, 675, 165, 625, 684, 173, 686, 175, 176, 177, 182, 185, 1212, 195, 1221, 198, 712, 201, 715, 205, 1232, 216, 804, 1242, 219, 221, 734, 225, 227, 1253, 230, 231, 232, 235, 1260, 237, 1265, 754, 761, 253, 256, 769, 263, 266, 783, 784, 984, 1049, 277, 790, 791, 292, 293, 806, 1320, 301, 1326, 815, 818, 307, 1333, 310, 313, 314, 1340, 829, 320, 54, 327, 840, 841, 331, 332, 1357, 848, 344, 346, 1338, 863, 353, 356, 869, 874, 364, 877, 878, 879, 369, 371, 884, 893, 894, 64, 390, 905, 906, 151, 912, 918, 153, 409, 413, 416, 417, 934, 423, 426, 427, 940, 429, 942, 431, 432, 935, 440, 954, 928, 452, 965, 966, 971, 333, 469, 982, 472, 478, 480, 483, 484, 485, 491, 1005, 1006, 595, 500, 504, 119, 1021])
valid_subjs_dti=sorted([1026, 427, 526, 15, 19, 535, 536, 537, 29, 542, 548, 549, 177, 552, 44, 51, 1077, 566, 56, 576, 65, 579, 580, 69, 71, 592, 593, 83, 599, 600, 356, 602, 869, 610, 616, 107, 108, 623, 625, 630, 631, 121, 124, 125, 277, 128, 619, 364, 138, 651, 141, 143, 144, 145, 25, 665, 154, 156, 157, 670, 1221, 675, 165, 113, 684, 173, 686, 175, 176, 689, 182, 185, 1212, 195, 197, 198, 712, 201, 715, 205, 1232, 216, 292, 1242, 219, 221, 734, 225, 227, 1253, 230, 231, 232, 235, 1260, 237, 1265, 754, 761, 1338, 253, 256, 769, 263, 266, 783, 784, 472, 1049, 789, 790, 791, 804, 293, 806, 1320, 1326, 815, 818, 307, 1333, 310, 313, 314, 1340, 829, 320, 54, 327, 840, 841, 331, 332, 1357, 848, 344, 346, 861, 863, 353, 868, 357, 874, 876, 877, 878, 879, 369, 371, 884, 893, 894, 64, 491, 390, 905, 906, 151, 912, 918, 153, 409, 413, 416, 417, 934, 423, 426, 939, 940, 429, 942, 431, 432, 440, 954, 928, 452, 966, 971, 333, 469, 982, 984, 478, 480, 483, 484, 485, 935, 1005, 1006, 595, 504, 119, 1021])

In [5]:
df.head()


Out[5]:
bvz_cc_only_posterior_count bvz_cc_only_posterior_md bvz_all_md bvz_cc_only_mid_anterior_fa bvz_cc_only_anterior_fa bvz_cc_central_length bvz_cc_central_md bvz_cc_only_mid_anterior_length bvz_cc_posterior_fa bvz_cc_central_count ... bvz_cc_central_fa bvz_cc_only_anterior_count bvz_all_count bvz_cc_posterior_md bvz_cc_only_anterior_md bvz_cc_only_mid_posterior_length bvz_cc_only_mid_anterior_md bvz_cc_only_mid_anterior_count bvz_cc_only_mid_posterior_md bvz_all_length
subject
1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
8 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 28 columns


In [6]:
df2 = df.loc[valid_subjs_dti]

In [7]:
df2.head()


Out[7]:
bvz_cc_only_posterior_count bvz_cc_only_posterior_md bvz_all_md bvz_cc_only_mid_anterior_fa bvz_cc_only_anterior_fa bvz_cc_central_length bvz_cc_central_md bvz_cc_only_mid_anterior_length bvz_cc_posterior_fa bvz_cc_central_count ... bvz_cc_central_fa bvz_cc_only_anterior_count bvz_all_count bvz_cc_posterior_md bvz_cc_only_anterior_md bvz_cc_only_mid_posterior_length bvz_cc_only_mid_anterior_md bvz_cc_only_mid_anterior_count bvz_cc_only_mid_posterior_md bvz_all_length
15 14561 0.000660 0.000660 0.562148 0.578425 79.986437 0.000661 71.535334 0.640425 648 ... 0.599848 1078 14561 0.000671 0.000670 87.970570 0.000677 650 0.000675 73.296830
19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
25 21325 0.000642 0.000642 0.566509 0.588876 92.115085 0.000643 73.329646 0.646343 799 ... 0.608456 1147 21325 0.000664 0.000647 92.842752 0.000662 556 0.000679 76.592623
29 14682 0.000661 0.000661 0.562855 0.591044 84.686447 0.000681 77.691011 0.638914 513 ... 0.612422 1170 14682 0.000692 0.000656 91.617650 0.000687 531 0.000691 71.951124
44 17145 0.000650 0.000650 0.542693 0.582544 82.801906 0.000668 70.365250 0.635036 560 ... 0.579631 1026 17145 0.000664 0.000667 94.305758 0.000695 523 0.000678 76.775858

5 rows × 28 columns


In [8]:
df3=df2.sort(axis=1)

In [9]:
df3.head()


Out[9]:
bvz_all_count bvz_all_fa bvz_all_length bvz_all_md bvz_cc_central_count bvz_cc_central_fa bvz_cc_central_length bvz_cc_central_md bvz_cc_only_anterior_count bvz_cc_only_anterior_fa ... bvz_cc_only_mid_posterior_length bvz_cc_only_mid_posterior_md bvz_cc_only_posterior_count bvz_cc_only_posterior_fa bvz_cc_only_posterior_length bvz_cc_only_posterior_md bvz_cc_posterior_count bvz_cc_posterior_fa bvz_cc_posterior_length bvz_cc_posterior_md
15 14561 0.575086 73.296830 0.000660 648 0.599848 79.986437 0.000661 1078 0.578425 ... 87.970570 0.000675 14561 0.575086 73.296830 0.000660 2391 0.640425 98.421849 0.000671
19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
25 21325 0.569830 76.592623 0.000642 799 0.608456 92.115085 0.000643 1147 0.588876 ... 92.842752 0.000679 21325 0.569830 76.592623 0.000642 3142 0.646343 111.835151 0.000664
29 14682 0.566290 71.951124 0.000661 513 0.612422 84.686447 0.000681 1170 0.591044 ... 91.617650 0.000691 14682 0.566290 71.951124 0.000661 1455 0.638914 91.698014 0.000692
44 17145 0.569323 76.775858 0.000650 560 0.579631 82.801906 0.000668 1026 0.582544 ... 94.305758 0.000678 17145 0.569323 76.775858 0.000650 2606 0.635036 114.889754 0.000664

5 rows × 28 columns


In [13]:
df3.to_excel(excel_name)
print excel_name


other_fibs.xlsx

In [47]:
str(valid_subjs_dti)


Out[47]:
'[15, 19, 25, 29, 44, 51, 54, 56, 64, 65, 69, 71, 83, 107, 108, 113, 119, 121, 124, 125, 128, 138, 141, 143, 144, 145, 151, 153, 154, 156, 157, 165, 173, 175, 176, 177, 182, 185, 195, 197, 198, 201, 205, 216, 219, 221, 225, 227, 230, 231, 232, 235, 237, 253, 256, 263, 266, 277, 292, 293, 307, 310, 313, 314, 320, 327, 331, 332, 333, 344, 346, 353, 356, 357, 364, 369, 371, 390, 409, 413, 416, 417, 423, 426, 427, 429, 431, 432, 440, 452, 469, 472, 478, 480, 483, 484, 485, 491, 504, 526, 535, 536, 537, 542, 548, 549, 552, 566, 576, 579, 580, 592, 593, 595, 599, 600, 602, 610, 616, 619, 623, 625, 630, 631, 651, 665, 670, 675, 684, 686, 689, 712, 715, 734, 754, 761, 769, 783, 784, 789, 790, 791, 804, 806, 815, 818, 829, 840, 841, 848, 861, 863, 868, 869, 874, 876, 877, 878, 879, 884, 893, 894, 905, 906, 912, 918, 928, 934, 935, 939, 940, 942, 954, 966, 971, 982, 984, 1005, 1006, 1021, 1026, 1049, 1077, 1212, 1221, 1232, 1242, 1253, 1260, 1265, 1320, 1326, 1333, 1338, 1340, 1357]'

In [47]: