In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [2]:
# Import stats
FILE = 'cleaned_stats.csv'
# JSON = '../stats.json'
JSON = '../stats50.json'
In [3]:
#df = pd.read_csv(FILE)
df = pd.read_json(JSON)
In [4]:
del df['board']
df.head()
Out[4]:
In [5]:
df['time_m'] = df['time']/60000
df.head()
Out[5]:
In [6]:
df.columns = ['Dimension','Heuristic', 'Rand_degree', 'Steps', 'Time in ms', 'Time in minutes']
In [7]:
df.groupby('Heuristic').describe(include=[np.number])
Out[7]:
In [6]:
dn = df[np.isfinite(df['steps'])]
dn.groupby('heuristic').describe(include=[np.number])
Out[6]:
In [ ]:
In [ ]:
In [ ]:
sns.factorplot(x='dimension', y='steps', data=df, hue='rand_degree', col='heuristic', size=7)
In [ ]:
sns.factorplot(x='dimension', y='time', data=df, hue='rand_degree', col='heuristic', size=7)
In [ ]:
g = sns.FacetGrid(data=df, row='dimension', col='heuristic', hue='rand_degree', sharex=True, sharey=True, aspect=2, size=7)
g =(g.map(sns.pointplot, "time", "steps").add_legend())
In [ ]:
sns.stripplot( x="dimension", y="steps", data=df, jitter=True,hue="rand_degree", size=4);
In [ ]:
sns.stripplot(x="rand_degree", y="time", data=df, jitter=True, hue="dimension", size=4);
In [ ]:
sns.stripplot(x="dimension", y="steps", data=df, jitter=True, hue="rand_degree", size=4);
In [ ]:
sns.stripplot(x="dimension", y="time", data=df, jitter=True, hue="rand_degree", size=4);
In [ ]:
sns.swarmplot(x="dimension", y="steps", data=df, hue="rand_degree");
In [ ]:
sns.swarmplot(x="dimension", y="time", data=df, hue="rand_degree");
In [ ]:
sns.swarmplot(x="rand_degree", y="steps", data=df, hue="dimension");
In [ ]:
sns.swarmplot(x="rand_degree", y="time", data=df, hue="dimension");
In [ ]:
sns.boxplot(x="rand_degree", y="steps", data=df, hue="dimension");
In [ ]:
sns.boxplot(x="rand_degree", y="time", data=df, hue="dimension");
In [ ]:
sns.boxplot(x="dimension", y="steps", data=df, hue="rand_degree");
In [ ]:
sns.boxplot(x="dimension", y="time", data=df, hue="rand_degree");
In [ ]:
sns.lmplot(x="steps", y="time", hue="dimension", col="heuristic", row='rand_degree', data=df)
In [ ]:
sns.lmplot(x="steps", y="time", hue="rand_degree", col="heuristic", row='dimension', data=df)
In [ ]:
sns.lmplot(x="steps", y="time", row="dimension", col="heuristic", hue="rand_degree",data=df)
In [ ]:
sns.lmplot(x="steps", y="time", hue="dimension", col="heuristic", row="rand_degree", data=df)
In [ ]:
sns.distplot(df['time'], bins=3)
In [ ]:
sns.lmplot(y="time", x="steps", col="dimension", row="rand_degree", data=df)
In [ ]:
sns.lmplot(y="steps", x="dimension", row="dimension", col="heuristic",hue="rand_degree", data=df)
In [ ]:
sns.lmplot(y="time", x="dimension", row="dimension", col="heuristic",hue="rand_degree", data=df)
In [ ]:
sns.lmplot(y="steps", x="dimension", hue="dimension", row="rand_degree", col="heuristic", data=df, x_jitter=.1)
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [55]:
g = sns.lmplot(x="Steps", y="Time in minutes", hue="Rand_degree", col="Heuristic", row='Dimension', data=df)
In [44]:
sns.factorplot(x='Dimension', y='Steps', data=df, hue='Rand_degree', col='Heuristic', size=7)
Out[44]:
In [45]:
sns.factorplot(x='Dimension', y='Time in minutes', data=df, hue='Rand_degree', col='Heuristic', size=7)
Out[45]:
In [12]:
g = sns.lmplot(y="Steps", x="Dimension", row="Dimension", col="Heuristic",hue="Rand_degree", data=df)
g.set(xticks=[3,4,5])
Out[12]:
In [15]:
g= sns.lmplot(y="Time in minutes", x="Dimension", row="Dimension", col="Heuristic",hue="Rand_degree", data=df)
g.set(xticks=[3,4,5])
Out[15]:
In [48]:
sns.boxplot(x="Rand_degree", y="Steps", data=df, hue="Dimension");
In [ ]:
In [ ]: