In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D, AveragePooling2D
from keras.optimizers import Adam
import glob
from PIL import Image

import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.layers.core import Flatten, Dense, Dropout, Lambda


Using TensorFlow backend.

In [ ]:


In [2]:
def plots(ims, figsize=(12,6), rows=1, interp=False, titles=None):
    if type(ims[0]) is np.ndarray:
        ims = np.array(ims).astype(np.uint8)
        if (ims.shape[-1] != 3):
            ims = ims.transpose((0,2,3,1))
    f = plt.figure(figsize=figsize)
    for i in range(len(ims)):
        sp = f.add_subplot(rows, len(ims)//rows, i+1)
        sp.axis('Off')
        if titles is not None:
            sp.set_title(titles[i], fontsize=16)
        plt.imshow(ims[i], interpolation=None if interp else 'none')

In [3]:
from keras.preprocessing import image

BATCH_SIZE = 64
PATH="data/"

def get_fit_sample():
    gen = image.ImageDataGenerator()
    sample_batches = gen.flow_from_directory(PATH+'valid', target_size=(224,224), 
            class_mode='categorical', shuffle=False, batch_size=300)
    imgs, labels = next(sample_batches)
    return imgs

gen = image.ImageDataGenerator(featurewise_std_normalization=True)
gen.fit(get_fit_sample())
val_batches = gen.flow_from_directory(PATH+'valid', target_size=(224,224), 
            class_mode='categorical', shuffle=True, batch_size=BATCH_SIZE)

gen = image.ImageDataGenerator(featurewise_std_normalization=True)
gen.fit(get_fit_sample())
batches = gen.flow_from_directory(PATH+'train', target_size=(224,224), 
            class_mode='categorical', shuffle=True, batch_size=BATCH_SIZE)

#imgs,labels = next(batches)
#plots(imgs[:2])


Found 2000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.
Found 25000 images belonging to 2 classes.

In [ ]:


In [4]:
CLASSES = 2
INPUT_SHAPE = (224,224,3)
model = Sequential()
    
# Block 1
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1', input_shape=INPUT_SHAPE))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool'))

# Block 2
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool'))

# Block 3
model.add(Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool'))

# Block 4
model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool'))

# Block 5
model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool'))

# Classification block
model.add(Flatten(name='flatten'))
model.add(Dense(4096, activation='relu', name='fc1'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu', name='fc2'))
model.add(Dropout(0.5))
model.add(Dense(CLASSES, activation='softmax', name='predictions'))

from keras.optimizers import SGD
sgd = SGD(lr=0.01, decay=0.0005, momentum=0.9, nesterov=False)


model.compile(optimizer=sgd, loss='mean_squared_error', metrics=['accuracy'])

In [5]:
%%time
hist = model.fit_generator(batches,  steps_per_epoch=100, epochs=10, validation_data=val_batches, validation_steps=10)
 
model.save('ConvNet-D-vgg16.h5')

# http://qiita.com/TypeNULL/items/4e4d7de11ab4361d6085
loss = hist.history['loss']
val_loss = hist.history['val_loss']
nb_epoch = len(loss)
plt.plot(range(nb_epoch), loss, marker='.', label='loss')
plt.plot(range(nb_epoch), val_loss, marker='.', label='val_loss')
plt.legend(loc='best', fontsize=10)
plt.grid()
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()


Epoch 1/10
100/100 [==============================] - 113s - loss: 0.2500 - acc: 0.5031 - val_loss: 0.2493 - val_acc: 0.5859
Epoch 2/10
100/100 [==============================] - 109s - loss: 0.2495 - acc: 0.5177 - val_loss: 0.2483 - val_acc: 0.5188
Epoch 3/10
100/100 [==============================] - 110s - loss: 0.2478 - acc: 0.5342 - val_loss: 0.2450 - val_acc: 0.5734
Epoch 4/10
100/100 [==============================] - 112s - loss: 0.2482 - acc: 0.5367 - val_loss: 0.2519 - val_acc: 0.4814
Epoch 5/10
100/100 [==============================] - 109s - loss: 0.2500 - acc: 0.5086 - val_loss: 0.2514 - val_acc: 0.4813
Epoch 6/10
100/100 [==============================] - 110s - loss: 0.2493 - acc: 0.5264 - val_loss: 0.2495 - val_acc: 0.4656
Epoch 7/10
100/100 [==============================] - 109s - loss: 0.2419 - acc: 0.5725 - val_loss: 0.2366 - val_acc: 0.6014
Epoch 8/10
100/100 [==============================] - 109s - loss: 0.2352 - acc: 0.5896 - val_loss: 0.2281 - val_acc: 0.6234
Epoch 9/10
100/100 [==============================] - 110s - loss: 0.2265 - acc: 0.6156 - val_loss: 0.2127 - val_acc: 0.6578
Epoch 10/10
100/100 [==============================] - 110s - loss: 0.2210 - acc: 0.6273 - val_loss: 0.2239 - val_acc: 0.6250
CPU times: user 12min 58s, sys: 2min 10s, total: 15min 8s
Wall time: 18min 27s

In [ ]: