Exercise: Visualize the evolution of the temperature anomaly monthly average over time with a timeseries chart
Tips:
import pandas as pd
pd.read_csv()
pd.to_datetime()
In [ ]:
    
import pandas as pd
from bokeh.charts import TimeSeries, output_notebook, show
    
In [ ]:
    
output_notebook()
    
In [ ]:
    
# Get data
be = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv',
                parse_dates=[0])
    
In [ ]:
    
be.head()
    
In [ ]:
    
be.datetime[:10]
    
In [ ]:
    
# Process data
be.datetime = pd.to_datetime(be.datetime)
be = be[['anomaly','datetime']]
    
In [ ]:
    
# Output option
output_notebook()
    
In [ ]:
    
# Create timeseries chart
t = TimeSeries(be, x='datetime', y='anomaly')
    
In [ ]:
    
# Show chart
show(t)
    
Exercise: Style your plot
Ideas:
Charts arguments can be found: http://bokeh.pydata.org/en/latest/docs/user_guide/charts.html#generic-arguments
In [ ]:
    
# Style your timeseries chart
    
In [ ]:
    
# Show new chart
    
Exercise: Add the moving annual average to your chart
Tips:
pd.rolling_mean()
In [ ]:
    
# Compute moving average
    
In [ ]:
    
# Create chart with moving average
    
In [ ]:
    
# Show chart with moving average