In [1]:
library(gdata)
library(ggplot2)
library(grid)
library(gridExtra)
In [3]:
source("C.2.5- Within_regions_generic_plot.R")
In [4]:
DT <- read.table("../Data/All_data.txt")
ratio_align <- read.table("../Data/Alignment_ratios_within_regions_across_diseases_wt_sims_patients_metrs_burdens.txt")
In [5]:
DT$Dis_lab <- DT$Disease
levels(DT$Dis_lab)
In [6]:
#Disease labels for plot
levels(DT$Dis_lab) <- c("",
"Cardiovasc.\nand circulatory",
"Chronic\nrespiratory",
"Cirrhosis",
"Congenital\nanomalies",
"Diabetes, urinary\nmale infertility",
"Common\ninfect. dis.",
"Digestive",
"Gynecol.",
"Hemoglob. and\nhemolytic anemia",
"Hepatitis",
"HIV",
"Leprosy",
"Malaria",
"Maternal\ndisorders",
"Mental and\nbehavioral",
"Musculosk.",
"Neglected trop.",
"Neonatal\ndisorders",
"Neoplasms",
"Neurological",
"Nutritional",
"Oral",
"Sense organ",
"STD",
"Skin and\nsubcutaneous",
"Sudden infant death",
"Tuberculosis")
In [7]:
#Region labels
DT$regs_lab <- DT$Region
levels(DT$regs_lab)
In [8]:
levels(DT$regs_lab) <- c("World",
"Eastern Europe and Central Asia",
"High-income countries",
"Latin America and Caribbean",
"Non-high-income countries",
"North Africa and Middle East",
"South Asia",
"Southeast Asia, East Asia and Oceania",
"Sub-Saharian Africa")
In [9]:
L <- Within_2Regions_plot(metr_burden = "yld",metr_res = "RCTs",region1 = "High-income",region2="Sub-Saharian Africa")
In [10]:
options(repr.plot.width=10, repr.plot.height=5)
grid.arrange(L[[1]],L[[2]], ncol=2)
In [12]:
options(repr.plot.width=5, repr.plot.height=5)
Within_Region_plot(metr_burden = "yld",metr_res = "Patients",region = "South Asia")
In [ ]: