Big table with info per region per disease of RCTs and burden


In [1]:
library(gdata)


gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.

gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.

Attaching package: ‘gdata’

The following object is masked from ‘package:stats’:

    nobs

The following object is masked from ‘package:utils’:

    object.size

The following object is masked from ‘package:base’:

    startsWith


In [2]:
GBD <- read.table("../Data/DALY_YLL_deaths_per_region_and_27_diseases_2005.txt")
RCT_regs <- read.table("../Data/RCTs_and_Patients_Nb_local_prop_median_UI_per_region_and_disease.txt")
RCT_dis <- read.table("../Data/RCTs_and_Patients_prop_among_all_and_HI_median_UI_across_regions_per_disease.txt")

In [3]:
head(GBD)


metrRegionDiseaseburden
1daly Central Europe, Eastern Europe, and Central AsiaCardiovascular and circulatory diseases 53161406.515
2daly Central Europe, Eastern Europe, and Central AsiaChronic respiratory diseases 5644608.1271
3daly Central Europe, Eastern Europe, and Central AsiaCirrhosis of the liver 4090337.297
4daly Central Europe, Eastern Europe, and Central AsiaCongenital anomalies 2079422.787
5daly Central Europe, Eastern Europe, and Central AsiaDiabetes, urinary diseases and male infertility 5049824.6483
6daly Central Europe, Eastern Europe, and Central Asia Diarrhea, lower respiratory infections, meningitis, and other common infectious diseases7281615.92163

In [4]:
head(RCT_regs)


RegionDiseaseNb_RCTs_lowNb_RCTs_medNb_RCTs_upNb_Patients_lowNb_Patients_medNb_Patients_upProp_RCTs_lowProp_RCTs_medProp_RCTs_upProp_Patients_lowProp_Patients_medProp_Patients_up
1Central Europe, Eastern Europe, and Central AsiaTuberculosis 4 17 28 817.791035280509 3727.45887445887 8286.37821455813 0.0670184629223417 0.279881461969048 0.465039030061452 0.0541345253732852 0.246996228187276 0.548102268596756
2High-income Tuberculosis 28 95 186 4760.52142857143 20935.8779220779 80181.1191734 0.04456973410046330.152 0.298837432345686 0.02461451167538080.106212756460855 0.408072232458222
3Latin America and CaribbeanTuberculosis 8 29 42 2031.4689484127 41578.255952381 46855.1901044703 0.185393444249661 0.67421141343607 0.985567832207902 0.25044366594425 4.89484230548107 5.74768206602598
4North Africa and Middle EastTuberculosis 4 17 31 426.4375 2930.46428571429 4985.14201868919 0.050657984871941 0.214646464646465 0.393272107025709 0.0509666269158626 0.351318357907269 0.598363560953588
5South Asia Tuberculosis 11 40 56 3184.94642857143 14501.0103479853 23036.5803571428 0.24519372262736 0.8831971737690441.26012776852171 0.1715347922852040.7813390179105591.28564993265724
6Southeast Asia, East Asia and OceaniaTuberculosis 15 53 76 5566.83035714286 28046.521031746 41850.471984127 0.169275419396122 0.603575902516798 0.872978293733491 0.17204138884611 0.869588012581335 1.32455313091434

In [5]:
head(RCT_dis)


RegionDiseaseProp_all_RCTs_lowProp_all_RCTs_medProp_all_RCTs_upProp_all_Patients_lowProp_all_Patients_medProp_all_Patients_upProp_NHI_RCTs_lowProp_NHI_RCTs_medProp_NHI_RCTs_upProp_NHI_Patients_lowProp_NHI_Patients_medProp_NHI_Patients_up
1Central Europe, Eastern Europe, and Central AsiaTuberculosis 3.69003740785565 5.80474934036939 8.13568226393947 0.366473691455004 0.839127809160704 2.83936826324646 5.08474576271187 8.01526717557252 11.486262637802 0.380957658815296 0.889686757284583 3.33797750372922
2High-income Tuberculosis 25.229856024248532.608695652173943.75 2.0993861537554 5.0135830676225720.7015918123193NA NA NA NA NA NA
3Latin America and CaribbeanTuberculosis 6.90279038112523 9.6969696969697 12.5560538116592 0.984953513555074 7.43862809488715 24.4784120543199 9.86401964418087 13.3333333333333 17.0268295534253 1.0378086262667 7.78820711422704 27.9627474021534
4Non-HI Tuberculosis 62.056419012877572.980501392757780.080281187090179.298408187680794.986416932377497.9006138462446NA NA NA NA NA NA
5North Africa and Middle EastTuberculosis 3.59039767997637 5.86510263929619 8.48484848484849 0.186777744586216 0.634283140727821 2.09269030195581 4.84384164222874 8.05369127516778 12.5 0.192695325477562 0.670666221682141 2.42120570680917
6South Asia Tuberculosis 9.7613376524390213.231552162849916.49716494845361.549686761091873.1853288250145510.475800200161114.166666666666718.232044198895 22.22222222222221.623354206128253.3621094629957612.183418694834

In [6]:
levels(GBD$Region)
levels(RCT_regs$Region)
levels(RCT_dis$Region)


  1. 'All'
  2. 'Central Europe, Eastern Europe, and Central Asia'
  3. 'High-income'
  4. 'Latin America and Caribbean'
  5. 'North Africa and Middle East'
  6. 'South Asia'
  7. 'Southeast Asia, East Asia and Oceania'
  8. 'Sub-Saharian Africa'
  1. 'All'
  2. 'Central Europe, Eastern Europe, and Central Asia'
  3. 'High-income'
  4. 'Latin America and Caribbean'
  5. 'Non-HI'
  6. 'North Africa and Middle East'
  7. 'South Asia'
  8. 'Southeast Asia, East Asia and Oceania'
  9. 'Sub-Saharian Africa'
  1. 'Central Europe, Eastern Europe, and Central Asia'
  2. 'High-income'
  3. 'Latin America and Caribbean'
  4. 'Non-HI'
  5. 'North Africa and Middle East'
  6. 'South Asia'
  7. 'Southeast Asia, East Asia and Oceania'
  8. 'Sub-Saharian Africa'

In [7]:
levels(GBD$Disease)
levels(RCT_regs$Disease)
levels(RCT_dis$Disease)


  1. 'all'
  2. 'Cardiovascular and circulatory diseases'
  3. 'Chronic respiratory diseases'
  4. 'Cirrhosis of the liver'
  5. 'Congenital anomalies'
  6. 'Diabetes, urinary diseases and male infertility'
  7. 'Diarrhea, lower respiratory infections, meningitis, and other common infectious diseases'
  8. 'Digestive diseases (except cirrhosis)'
  9. 'Gynecological diseases'
  10. 'Hemoglobinopathies and hemolytic anemias'
  11. 'Hepatitis'
  12. 'HIV/AIDS'
  13. 'Leprosy'
  14. 'Malaria'
  15. 'Maternal disorders'
  16. 'Mental and behavioral disorders'
  17. 'Musculoskeletal disorders'
  18. 'Neglected tropical diseases excluding malaria'
  19. 'Neonatal disorders'
  20. 'Neoplasms'
  21. 'Neurological disorders'
  22. 'Nutritional deficiencies'
  23. 'Oral disorders'
  24. 'Sense organ diseases'
  25. 'Sexually transmitted diseases excluding HIV'
  26. 'Skin and subcutaneous diseases'
  27. 'Sudden infant death syndrome'
  28. 'Tuberculosis'
  1. 'All'
  2. 'Cardiovascular and circulatory diseases'
  3. 'Chronic respiratory diseases'
  4. 'Cirrhosis of the liver'
  5. 'Congenital anomalies'
  6. 'Diabetes, urinary diseases and male infertility'
  7. 'Diarrhea, lower respiratory infections, meningitis, and other common infectious diseases'
  8. 'Digestive diseases (except cirrhosis)'
  9. 'Gynecological diseases'
  10. 'Hepatitis'
  11. 'HIV/AIDS'
  12. 'Malaria'
  13. 'Maternal disorders'
  14. 'Mental and behavioral disorders'
  15. 'Musculoskeletal disorders'
  16. 'Neglected tropical diseases excluding malaria'
  17. 'Neonatal disorders'
  18. 'Neoplasms'
  19. 'Neurological disorders'
  20. 'Nutritional deficiencies'
  21. 'Oral disorders'
  22. 'Sense organ diseases'
  23. 'Sexually transmitted diseases excluding HIV'
  24. 'Skin and subcutaneous diseases'
  25. 'Tuberculosis'
  1. 'All'
  2. 'Cardiovascular and circulatory diseases'
  3. 'Chronic respiratory diseases'
  4. 'Cirrhosis of the liver'
  5. 'Congenital anomalies'
  6. 'Diabetes, urinary diseases and male infertility'
  7. 'Diarrhea, lower respiratory infections, meningitis, and other common infectious diseases'
  8. 'Digestive diseases (except cirrhosis)'
  9. 'Gynecological diseases'
  10. 'Hepatitis'
  11. 'HIV/AIDS'
  12. 'Malaria'
  13. 'Maternal disorders'
  14. 'Mental and behavioral disorders'
  15. 'Musculoskeletal disorders'
  16. 'Neglected tropical diseases excluding malaria'
  17. 'Neonatal disorders'
  18. 'Neoplasms'
  19. 'Neurological disorders'
  20. 'Nutritional deficiencies'
  21. 'Oral disorders'
  22. 'Sense organ diseases'
  23. 'Sexually transmitted diseases excluding HIV'
  24. 'Skin and subcutaneous diseases'
  25. 'Tuberculosis'

In [8]:
#Adding to GBD data , burden of all diseases in all regions
gbd_all <- tapply(GBD$burden[GBD$Region=="All"],paste(GBD$metr[GBD$Region=="All"],GBD$Region[GBD$Region=="All"]),sum)
gbd_all <- data.frame(metr=levels(GBD$metr),
                      Region="All",
                      Disease="all",
                     burden=as.numeric(gbd_all))
GBD <- rbind(GBD,gbd_all)
levels(GBD$Disease)[1] <- "All"

In [9]:
GBD <- GBD[order(GBD$Region,GBD$Disease),]

In [10]:
#Adding burden in Non-High-income regions
gbd_nhi <- GBD[GBD$Region=="All",]
gbd_nhi$Region <- "Non-HI"
gbd_nhi$burden <- gbd_nhi$burden - GBD$burden[GBD$Region=="High-income"]
GBD <- rbind(GBD,gbd_nhi)

In [11]:
GBD$Region <- reorder(GBD$Region,new.order=sort(levels(GBD$Region)))

In [12]:
#Different columns for each metric of burden
GBDdaly <- GBD[GBD$metr=="daly",]
GBDdaly$burden_daly <- GBDdaly$burden
GBDyll <- GBD[GBD$metr=="yll",]
GBDyll$burden_yll <- GBDyll$burden
GBDyld <- GBD[GBD$metr=="yld",]
GBDyld$burden_yld <- GBDyld$burden
GBDdeath <- GBD[GBD$metr=="death",]
GBDdeath$burden_death <- GBDdeath$burden

In [13]:
G <- merge(GBDdaly,GBDyll,by=c("Region","Disease"),all=TRUE)
G <- merge(G,GBDyld,by=c("Region","Disease"),all=TRUE)
G <- merge(G,GBDdeath,by=c("Region","Disease"),all=TRUE)


Warning message in merge.data.frame(G, GBDdeath, by = c("Region", "Disease"), all = TRUE):
“column names ‘metr.x’, ‘burden.x’, ‘metr.y’, ‘burden.y’ are duplicated in the result”

In [14]:
G <- G[,c("Region", "Disease", "burden_daly", "burden_yll", "burden_yld", "burden_death")]

In [15]:
head(G)


RegionDiseaseburden_dalyburden_yllburden_yldburden_death
1All All 2220063510.800761548796838.65609671266365.04493546250530.2665929
2All Cardiovascular and circulatory diseases287404109.09231 267807387.790028 19596607.312309 14726543.7199449
3All Chronic respiratory diseases112485355.22285 67399684.65133 45085687.018707 3572762.590618
4All Cirrhosis of the liver30462721.1164 29883176.0549 579531.730192 990159.446125
5All Congenital anomalies43254504.439 40150785.446 3103715.2332 553886.39191
6All Diabetes, urinary diseases and male infertility75821480.094146 48042869.768465 27778586.1421424 2082326.848938

In [16]:
#Within regions, local proportions of burden across diseases
G$Prop_loc_burden_daly <- 100*G$burden_daly/rep(G$burden_daly[G$Disease=="All"],as.numeric(table(G$Region)))
G$Prop_loc_burden_yll <- 100*G$burden_yll/rep(G$burden_yll[G$Disease=="All"],as.numeric(table(G$Region)))
G$Prop_loc_burden_yld <- 100*G$burden_yld/rep(G$burden_yld[G$Disease=="All"],as.numeric(table(G$Region)))
G$Prop_loc_burden_death <- 100*G$burden_death/rep(G$burden_death[G$Disease=="All"],as.numeric(table(G$Region)))

In [17]:
#Within diseases, global proportion of burden across regions
G$Prop_glob_burden_daly <- 100*G$burden_daly/rep(G$burden_daly[G$Region=="All"],times=length(levels(G$Region)))
G$Prop_glob_burden_yll <- 100*G$burden_yll/rep(G$burden_yll[G$Region=="All"],times=length(levels(G$Region)))
G$Prop_glob_burden_yld <- 100*G$burden_yld/rep(G$burden_yld[G$Region=="All"],times=length(levels(G$Region)))
G$Prop_glob_burden_death <- 100*G$burden_death/rep(G$burden_death[G$Region=="All"],times=length(levels(G$Region)))

In [18]:
#Within diseases, proportion of burden across non-high-income regions
G$Prop_NHI_burden_daly <- 100*G$burden_daly/rep(G$burden_daly[G$Region=="Non-HI"],times=length(levels(G$Region)))
G$Prop_NHI_burden_yll <- 100*G$burden_yll/rep(G$burden_yll[G$Region=="Non-HI"],times=length(levels(G$Region)))
G$Prop_NHI_burden_yld <- 100*G$burden_yld/rep(G$burden_yld[G$Region=="Non-HI"],times=length(levels(G$Region)))
G$Prop_NHI_burden_death <- 100*G$burden_death/rep(G$burden_death[G$Region=="Non-HI"],times=length(levels(G$Region)))

G$Prop_NHI_burden_daly[G$Region%in%c("All","High-income")] <- NA
G$Prop_NHI_burden_yll[G$Region%in%c("All","High-income")] <- NA
G$Prop_NHI_burden_yld[G$Region%in%c("All","High-income")] <- NA
G$Prop_NHI_burden_death[G$Region%in%c("All","High-income")] <- NA

In [19]:
names(RCT_regs)
names(RCT_dis)
names(G)


  1. 'Region'
  2. 'Disease'
  3. 'Nb_RCTs_low'
  4. 'Nb_RCTs_med'
  5. 'Nb_RCTs_up'
  6. 'Nb_Patients_low'
  7. 'Nb_Patients_med'
  8. 'Nb_Patients_up'
  9. 'Prop_RCTs_low'
  10. 'Prop_RCTs_med'
  11. 'Prop_RCTs_up'
  12. 'Prop_Patients_low'
  13. 'Prop_Patients_med'
  14. 'Prop_Patients_up'
  1. 'Region'
  2. 'Disease'
  3. 'Prop_all_RCTs_low'
  4. 'Prop_all_RCTs_med'
  5. 'Prop_all_RCTs_up'
  6. 'Prop_all_Patients_low'
  7. 'Prop_all_Patients_med'
  8. 'Prop_all_Patients_up'
  9. 'Prop_NHI_RCTs_low'
  10. 'Prop_NHI_RCTs_med'
  11. 'Prop_NHI_RCTs_up'
  12. 'Prop_NHI_Patients_low'
  13. 'Prop_NHI_Patients_med'
  14. 'Prop_NHI_Patients_up'
  1. 'Region'
  2. 'Disease'
  3. 'burden_daly'
  4. 'burden_yll'
  5. 'burden_yld'
  6. 'burden_death'
  7. 'Prop_loc_burden_daly'
  8. 'Prop_loc_burden_yll'
  9. 'Prop_loc_burden_yld'
  10. 'Prop_loc_burden_death'
  11. 'Prop_glob_burden_daly'
  12. 'Prop_glob_burden_yll'
  13. 'Prop_glob_burden_yld'
  14. 'Prop_glob_burden_death'
  15. 'Prop_NHI_burden_daly'
  16. 'Prop_NHI_burden_yll'
  17. 'Prop_NHI_burden_yld'
  18. 'Prop_NHI_burden_death'

In [20]:
names(RCT_regs) <- gsub("Prop","Prop_loc",names(RCT_regs))
names(RCT_dis) <- gsub("_all_","_glob_",names(RCT_dis))

In [21]:
DT <- merge(G,RCT_regs,by=c("Region","Disease"),all=TRUE)
DT <- merge(DT,RCT_dis,by=c("Region","Disease"),all=TRUE)

In [22]:
head(DT)


RegionDiseaseburden_dalyburden_yllburden_yldburden_deathProp_loc_burden_dalyProp_loc_burden_yllProp_loc_burden_yldProp_loc_burden_deathProp_glob_RCTs_upProp_glob_Patients_lowProp_glob_Patients_medProp_glob_Patients_upProp_NHI_RCTs_lowProp_NHI_RCTs_medProp_NHI_RCTs_upProp_NHI_Patients_lowProp_NHI_Patients_medProp_NHI_Patients_up
1All All 2220063510.800761548796838.65609671266365.04493546250530.2665929100 100 100 100 NA NA NA NA NA NA NA NA NA NA
2All Cardiovascular and circulatory diseases287404109.09231 267807387.790028 19596607.312309 14726543.7199449 12.9457606818034 17.2913180803241 2.91934891017476 31.8408105486781 NA NA NA NA NA NA NA NA NA NA
3All Chronic respiratory diseases112485355.22285 67399684.65133 45085687.018707 3572762.590618 5.06676294059161 4.35174472010244 6.71651215768706 7.72480352122283 NA NA NA NA NA NA NA NA NA NA
4All Cirrhosis of the liver30462721.1164 29883176.0549 579531.730192 990159.446125 1.37215538961821 1.9294445410174 0.0863340933450771 2.14086074347173 NA NA NA NA NA NA NA NA NA NA
5All Congenital anomalies43254504.439 40150785.446 3103715.2332 553886.39191 1.94834536167834 2.59238555011768 0.462367160760727 1.19757846821937 NA NA NA NA NA NA NA NA NA NA
6All Diabetes, urinary diseases and male infertility75821480.094146 48042869.768465 27778586.1421424 2082326.848938 3.41528428016898 3.10194781971226 4.13823596543272 4.50227670241887 NA NA NA NA NA NA NA NA NA NA

In [23]:
write.table(DT,"../Data/All_data.txt")

In [ ]: