Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f56e64e8390>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f56e6411f28>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    real_inputs = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels))
    z_inputs = tf.placeholder(tf.float32, (None, z_dim))
    learning_rate = tf.placeholder(tf.float32, ())

    return real_inputs, z_inputs, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [15]:
def discriminator(images, reuse=False, alpha=0.2):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 28x28x3 or 28x28x1
        # First convolution
        conv_1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same', activation=None)
        # Leaky ReLU
        conv_1 = tf.maximum(conv_1, alpha * conv_1)
        # Size is now 14x14x64
        
        # Second convolution
        conv_2 = tf.layers.conv2d(conv_1, 128, 5, strides=2, padding='same', activation=None, use_bias=False)
        conv_2 = tf.layers.batch_normalization(conv_2, training=True)
        conv_2 = tf.maximum(conv_2, alpha * conv_2)
        # Size is now 7x7x128
        
        # Third convolution
        conv_3 = tf.layers.conv2d(conv_2, 256, 5, strides=2, padding='same', activation=None, use_bias=False)
        conv_3 = tf.layers.batch_normalization(conv_3, training=True)
        conv_3 = tf.maximum(conv_3, alpha * conv_3)
        # Size is now 4x4x256
        
        flat = tf.contrib.layers.flatten(conv_3)
        logits = tf.layers.dense(flat, 1, activation=None)
        out = tf.sigmoid(logits)

    return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [16]:
def generator(z, out_channel_dim, is_train=True, alpha=0.2):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    with tf.variable_scope('generator', reuse=(not is_train)):
        # First fully connected layer
        x = tf.layers.dense(z, 4*4*256, activation=None, use_bias=False)
        x = tf.reshape(x, [-1, 4, 4, 256])
        # Batch normalization
        x = tf.layers.batch_normalization(x, training=is_train)
        # Leaky ReLU
        x = tf.maximum(x, alpha * x)
        
        # First convolutional layer, with shape 7x7x128
        conv_1 = tf.layers.conv2d_transpose(x, 128, 4, strides=1, padding='valid', activation=None, use_bias=False)
        # Batch normalization
        conv_1 = tf.layers.batch_normalization(conv_1, training=is_train)
        # Leaky ReLU
        conv_1 = tf.maximum(conv_1, alpha * conv_1)
        
        # Second convolutional layer, with shape 14x14x64
        conv_2 = tf.layers.conv2d_transpose(conv_1, 64, 5, strides=2, padding='same', activation=None, use_bias=False)
        # Batch normalization
        conv_2 = tf.layers.batch_normalization(conv_2, training=is_train)
        # Leaky ReLU
        conv_2 = tf.maximum(conv_2, alpha * conv_2)
        
        # Output layer, 28x28xout_channel_dim
        logits = tf.layers.conv2d_transpose(conv_2, out_channel_dim, 5, strides=2, padding='same', activation=None, use_bias=False)
        out = tf.tanh(logits)
    
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [17]:
def model_loss(input_real, input_z, out_channel_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim, True, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, reuse=False, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)
    
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real) * 0.9))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [18]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [19]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [20]:
def train(epoch_count, batch_size, z_dim, learn_rate, beta1, get_batches, data_shape, data_image_mode, alpha):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    
    losses = []
    steps = 0
    
    # TODO: Build Model
    if data_image_mode == "L":
        out_channel_dim = 1
    else:
        out_channel_dim = 3
        
    real_inputs, z_inputs, learning_rate = model_inputs(data_shape[1], data_shape[2], out_channel_dim, z_dim)
    d_loss, g_loss = model_loss(real_inputs, z_inputs, out_channel_dim, alpha)
    d_train_opt, g_train_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                
                steps += 1
                batch_images *= 2
                
                # TODO: Train Model
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                # Run optimizers
                _ = sess.run(d_train_opt, feed_dict={real_inputs: batch_images, z_inputs: batch_z, learning_rate: learn_rate})
                _ = sess.run(g_train_opt, feed_dict={real_inputs: batch_images, z_inputs: batch_z, learning_rate: learn_rate})
                _ = sess.run(g_train_opt, feed_dict={real_inputs: batch_images, z_inputs: batch_z, learning_rate: learn_rate})
                
                if steps % 10 == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({real_inputs: batch_images, z_inputs: batch_z})
                    train_loss_g = g_loss.eval({z_inputs: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epoch_count),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))
                
                if steps % 100 == 0:
                    show_generator_output(sess, 72, z_inputs, out_channel_dim, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [21]:
batch_size = 128
z_dim = 100
learning_rate = 0.001
beta1 = 0.5
alpha = 0.2


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode, alpha)


Epoch 1/2... Discriminator Loss: 2.2148... Generator Loss: 0.8275
Epoch 1/2... Discriminator Loss: 2.0278... Generator Loss: 2.5844
Epoch 1/2... Discriminator Loss: 0.7496... Generator Loss: 2.1680
Epoch 1/2... Discriminator Loss: 2.0368... Generator Loss: 0.3136
Epoch 1/2... Discriminator Loss: 1.3192... Generator Loss: 0.7725
Epoch 1/2... Discriminator Loss: 1.6665... Generator Loss: 0.5539
Epoch 1/2... Discriminator Loss: 1.7007... Generator Loss: 0.8311
Epoch 1/2... Discriminator Loss: 1.3316... Generator Loss: 1.5465
Epoch 1/2... Discriminator Loss: 1.3539... Generator Loss: 1.0510
Epoch 1/2... Discriminator Loss: 1.4851... Generator Loss: 0.8888
Epoch 1/2... Discriminator Loss: 1.4924... Generator Loss: 0.8998
Epoch 1/2... Discriminator Loss: 1.2952... Generator Loss: 0.7382
Epoch 1/2... Discriminator Loss: 1.3560... Generator Loss: 0.9097
Epoch 1/2... Discriminator Loss: 1.4659... Generator Loss: 1.0096
Epoch 1/2... Discriminator Loss: 1.3990... Generator Loss: 0.8157
Epoch 1/2... Discriminator Loss: 1.4547... Generator Loss: 1.2215
Epoch 1/2... Discriminator Loss: 1.4527... Generator Loss: 0.5244
Epoch 1/2... Discriminator Loss: 1.3875... Generator Loss: 0.8883
Epoch 1/2... Discriminator Loss: 1.6306... Generator Loss: 1.3262
Epoch 1/2... Discriminator Loss: 1.4041... Generator Loss: 0.6477
Epoch 1/2... Discriminator Loss: 1.3584... Generator Loss: 0.6446
Epoch 1/2... Discriminator Loss: 1.4210... Generator Loss: 0.5416
Epoch 1/2... Discriminator Loss: 1.4014... Generator Loss: 0.6978
Epoch 1/2... Discriminator Loss: 1.4691... Generator Loss: 0.5976
Epoch 1/2... Discriminator Loss: 1.3311... Generator Loss: 1.0953
Epoch 1/2... Discriminator Loss: 1.4842... Generator Loss: 1.3305
Epoch 1/2... Discriminator Loss: 1.3407... Generator Loss: 0.6180
Epoch 1/2... Discriminator Loss: 1.3748... Generator Loss: 0.7503
Epoch 1/2... Discriminator Loss: 1.4002... Generator Loss: 0.7318
Epoch 1/2... Discriminator Loss: 1.5758... Generator Loss: 1.2576
Epoch 1/2... Discriminator Loss: 1.4610... Generator Loss: 1.0434
Epoch 1/2... Discriminator Loss: 1.2622... Generator Loss: 1.0254
Epoch 1/2... Discriminator Loss: 1.4751... Generator Loss: 1.3294
Epoch 1/2... Discriminator Loss: 1.3623... Generator Loss: 1.0116
Epoch 1/2... Discriminator Loss: 1.3152... Generator Loss: 0.9962
Epoch 1/2... Discriminator Loss: 1.6053... Generator Loss: 0.3912
Epoch 1/2... Discriminator Loss: 1.3685... Generator Loss: 0.6913
Epoch 1/2... Discriminator Loss: 1.7998... Generator Loss: 1.8109
Epoch 1/2... Discriminator Loss: 1.2996... Generator Loss: 0.7283
Epoch 1/2... Discriminator Loss: 1.5006... Generator Loss: 0.5063
Epoch 1/2... Discriminator Loss: 1.3313... Generator Loss: 0.8329
Epoch 1/2... Discriminator Loss: 1.3742... Generator Loss: 0.9642
Epoch 1/2... Discriminator Loss: 1.4192... Generator Loss: 0.5216
Epoch 1/2... Discriminator Loss: 1.3022... Generator Loss: 0.8123
Epoch 1/2... Discriminator Loss: 1.5865... Generator Loss: 0.4047
Epoch 1/2... Discriminator Loss: 1.3598... Generator Loss: 0.8614
Epoch 2/2... Discriminator Loss: 1.3154... Generator Loss: 0.9517
Epoch 2/2... Discriminator Loss: 1.2626... Generator Loss: 0.8879
Epoch 2/2... Discriminator Loss: 1.4215... Generator Loss: 1.1816
Epoch 2/2... Discriminator Loss: 1.3604... Generator Loss: 0.6467
Epoch 2/2... Discriminator Loss: 1.3910... Generator Loss: 0.7749
Epoch 2/2... Discriminator Loss: 1.3843... Generator Loss: 0.5981
Epoch 2/2... Discriminator Loss: 1.4784... Generator Loss: 0.5462
Epoch 2/2... Discriminator Loss: 1.3045... Generator Loss: 1.0201
Epoch 2/2... Discriminator Loss: 1.4256... Generator Loss: 0.8151
Epoch 2/2... Discriminator Loss: 1.3968... Generator Loss: 0.8451
Epoch 2/2... Discriminator Loss: 1.3600... Generator Loss: 0.9258
Epoch 2/2... Discriminator Loss: 1.5207... Generator Loss: 0.4336
Epoch 2/2... Discriminator Loss: 1.3625... Generator Loss: 0.7145
Epoch 2/2... Discriminator Loss: 1.3560... Generator Loss: 1.0674
Epoch 2/2... Discriminator Loss: 1.3170... Generator Loss: 1.0501
Epoch 2/2... Discriminator Loss: 1.5793... Generator Loss: 0.3990
Epoch 2/2... Discriminator Loss: 1.3151... Generator Loss: 0.8815
Epoch 2/2... Discriminator Loss: 1.3075... Generator Loss: 1.0710
Epoch 2/2... Discriminator Loss: 1.4316... Generator Loss: 0.5749
Epoch 2/2... Discriminator Loss: 1.3519... Generator Loss: 0.7894
Epoch 2/2... Discriminator Loss: 1.4102... Generator Loss: 0.5511
Epoch 2/2... Discriminator Loss: 1.4710... Generator Loss: 0.5492
Epoch 2/2... Discriminator Loss: 1.3735... Generator Loss: 0.7300
Epoch 2/2... Discriminator Loss: 1.2953... Generator Loss: 0.7690
Epoch 2/2... Discriminator Loss: 1.7142... Generator Loss: 0.3245
Epoch 2/2... Discriminator Loss: 1.5888... Generator Loss: 1.6080
Epoch 2/2... Discriminator Loss: 1.2475... Generator Loss: 0.8664
Epoch 2/2... Discriminator Loss: 1.7095... Generator Loss: 1.8474
Epoch 2/2... Discriminator Loss: 1.3126... Generator Loss: 0.7612
Epoch 2/2... Discriminator Loss: 1.3259... Generator Loss: 0.7789
Epoch 2/2... Discriminator Loss: 1.5188... Generator Loss: 0.4475
Epoch 2/2... Discriminator Loss: 1.2802... Generator Loss: 1.0245
Epoch 2/2... Discriminator Loss: 1.3935... Generator Loss: 0.7506
Epoch 2/2... Discriminator Loss: 1.4177... Generator Loss: 0.7132
Epoch 2/2... Discriminator Loss: 1.3982... Generator Loss: 0.7191
Epoch 2/2... Discriminator Loss: 1.3725... Generator Loss: 0.7083
Epoch 2/2... Discriminator Loss: 1.3920... Generator Loss: 0.9342
Epoch 2/2... Discriminator Loss: 1.4333... Generator Loss: 1.0651
Epoch 2/2... Discriminator Loss: 1.2714... Generator Loss: 0.9234
Epoch 2/2... Discriminator Loss: 1.4174... Generator Loss: 0.5176
Epoch 2/2... Discriminator Loss: 1.4663... Generator Loss: 0.5421
Epoch 2/2... Discriminator Loss: 1.3978... Generator Loss: 0.5614
Epoch 2/2... Discriminator Loss: 1.4607... Generator Loss: 0.5231
Epoch 2/2... Discriminator Loss: 1.3966... Generator Loss: 0.9952
Epoch 2/2... Discriminator Loss: 1.3393... Generator Loss: 1.0350
Epoch 2/2... Discriminator Loss: 1.3880... Generator Loss: 0.7423
Epoch 2/2... Discriminator Loss: 1.4616... Generator Loss: 0.6193

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [22]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5
alpha = 0.2


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode, alpha)


Epoch 1/1... Discriminator Loss: 0.8159... Generator Loss: 1.7385
Epoch 1/1... Discriminator Loss: 1.3676... Generator Loss: 0.6806
Epoch 1/1... Discriminator Loss: 0.8821... Generator Loss: 3.3559
Epoch 1/1... Discriminator Loss: 0.9097... Generator Loss: 1.5779
Epoch 1/1... Discriminator Loss: 0.9497... Generator Loss: 2.7561
Epoch 1/1... Discriminator Loss: 1.1625... Generator Loss: 0.9476
Epoch 1/1... Discriminator Loss: 1.4274... Generator Loss: 1.0353
Epoch 1/1... Discriminator Loss: 0.8160... Generator Loss: 1.4696
Epoch 1/1... Discriminator Loss: 0.7688... Generator Loss: 1.3591
Epoch 1/1... Discriminator Loss: 0.7155... Generator Loss: 1.4949
Epoch 1/1... Discriminator Loss: 0.6205... Generator Loss: 2.1353
Epoch 1/1... Discriminator Loss: 0.5523... Generator Loss: 2.2906
Epoch 1/1... Discriminator Loss: 0.6159... Generator Loss: 1.8000
Epoch 1/1... Discriminator Loss: 0.4819... Generator Loss: 3.0194
Epoch 1/1... Discriminator Loss: 0.6642... Generator Loss: 1.6233
Epoch 1/1... Discriminator Loss: 0.5276... Generator Loss: 2.6195
Epoch 1/1... Discriminator Loss: 0.5637... Generator Loss: 2.0787
Epoch 1/1... Discriminator Loss: 1.5955... Generator Loss: 0.5061
Epoch 1/1... Discriminator Loss: 1.0061... Generator Loss: 1.1647
Epoch 1/1... Discriminator Loss: 1.2371... Generator Loss: 0.9527
Epoch 1/1... Discriminator Loss: 1.1129... Generator Loss: 1.0059
Epoch 1/1... Discriminator Loss: 1.2732... Generator Loss: 0.8506
Epoch 1/1... Discriminator Loss: 1.3741... Generator Loss: 0.5738
Epoch 1/1... Discriminator Loss: 1.4066... Generator Loss: 0.7224
Epoch 1/1... Discriminator Loss: 1.7513... Generator Loss: 0.4978
Epoch 1/1... Discriminator Loss: 1.1973... Generator Loss: 1.3315
Epoch 1/1... Discriminator Loss: 1.3567... Generator Loss: 0.8491
Epoch 1/1... Discriminator Loss: 1.2123... Generator Loss: 1.0082
Epoch 1/1... Discriminator Loss: 1.4092... Generator Loss: 0.6664
Epoch 1/1... Discriminator Loss: 1.8381... Generator Loss: 0.5136
Epoch 1/1... Discriminator Loss: 0.9939... Generator Loss: 1.4852
Epoch 1/1... Discriminator Loss: 1.4556... Generator Loss: 1.5919
Epoch 1/1... Discriminator Loss: 1.7593... Generator Loss: 0.4477
Epoch 1/1... Discriminator Loss: 1.2867... Generator Loss: 0.8457
Epoch 1/1... Discriminator Loss: 1.2689... Generator Loss: 1.1754
Epoch 1/1... Discriminator Loss: 1.6373... Generator Loss: 1.5696
Epoch 1/1... Discriminator Loss: 1.1948... Generator Loss: 1.1318
Epoch 1/1... Discriminator Loss: 1.3043... Generator Loss: 0.7411
Epoch 1/1... Discriminator Loss: 1.1445... Generator Loss: 0.9905
Epoch 1/1... Discriminator Loss: 1.3840... Generator Loss: 0.5999
Epoch 1/1... Discriminator Loss: 1.2926... Generator Loss: 0.9925
Epoch 1/1... Discriminator Loss: 1.5662... Generator Loss: 0.6540
Epoch 1/1... Discriminator Loss: 1.3468... Generator Loss: 0.7519
Epoch 1/1... Discriminator Loss: 1.4769... Generator Loss: 0.8087
Epoch 1/1... Discriminator Loss: 1.5211... Generator Loss: 0.6104
Epoch 1/1... Discriminator Loss: 1.1193... Generator Loss: 1.0045
Epoch 1/1... Discriminator Loss: 1.1999... Generator Loss: 1.2038
Epoch 1/1... Discriminator Loss: 1.3815... Generator Loss: 0.7797
Epoch 1/1... Discriminator Loss: 1.2414... Generator Loss: 0.7944
Epoch 1/1... Discriminator Loss: 1.5503... Generator Loss: 0.7966
Epoch 1/1... Discriminator Loss: 1.2796... Generator Loss: 0.9197
Epoch 1/1... Discriminator Loss: 1.3939... Generator Loss: 0.6346
Epoch 1/1... Discriminator Loss: 1.4803... Generator Loss: 0.8492
Epoch 1/1... Discriminator Loss: 1.2422... Generator Loss: 0.8690
Epoch 1/1... Discriminator Loss: 1.3712... Generator Loss: 0.7604
Epoch 1/1... Discriminator Loss: 1.2251... Generator Loss: 0.8838
Epoch 1/1... Discriminator Loss: 1.5615... Generator Loss: 0.5964
Epoch 1/1... Discriminator Loss: 1.4872... Generator Loss: 0.7277
Epoch 1/1... Discriminator Loss: 1.6734... Generator Loss: 0.5976
Epoch 1/1... Discriminator Loss: 1.3625... Generator Loss: 0.6719
Epoch 1/1... Discriminator Loss: 1.2731... Generator Loss: 0.7854
Epoch 1/1... Discriminator Loss: 1.4344... Generator Loss: 0.6041
Epoch 1/1... Discriminator Loss: 1.3701... Generator Loss: 0.7214
Epoch 1/1... Discriminator Loss: 1.5806... Generator Loss: 0.5856
Epoch 1/1... Discriminator Loss: 1.5515... Generator Loss: 0.5462
Epoch 1/1... Discriminator Loss: 1.4804... Generator Loss: 1.0001
Epoch 1/1... Discriminator Loss: 1.2836... Generator Loss: 0.7022
Epoch 1/1... Discriminator Loss: 1.3195... Generator Loss: 0.6269
Epoch 1/1... Discriminator Loss: 1.3776... Generator Loss: 0.8070
Epoch 1/1... Discriminator Loss: 1.3705... Generator Loss: 0.7255
Epoch 1/1... Discriminator Loss: 1.3971... Generator Loss: 0.7576
Epoch 1/1... Discriminator Loss: 1.5039... Generator Loss: 0.5388
Epoch 1/1... Discriminator Loss: 1.2762... Generator Loss: 0.9136
Epoch 1/1... Discriminator Loss: 1.6957... Generator Loss: 0.5776
Epoch 1/1... Discriminator Loss: 1.4581... Generator Loss: 0.7554
Epoch 1/1... Discriminator Loss: 1.4643... Generator Loss: 0.8657
Epoch 1/1... Discriminator Loss: 1.4348... Generator Loss: 0.8633
Epoch 1/1... Discriminator Loss: 1.5613... Generator Loss: 0.5239
Epoch 1/1... Discriminator Loss: 1.4122... Generator Loss: 0.7224
Epoch 1/1... Discriminator Loss: 1.6144... Generator Loss: 0.6053
Epoch 1/1... Discriminator Loss: 1.4728... Generator Loss: 0.7349
Epoch 1/1... Discriminator Loss: 1.5719... Generator Loss: 0.6314
Epoch 1/1... Discriminator Loss: 1.3874... Generator Loss: 0.7904
Epoch 1/1... Discriminator Loss: 1.3980... Generator Loss: 0.8258
Epoch 1/1... Discriminator Loss: 1.4524... Generator Loss: 0.6411
Epoch 1/1... Discriminator Loss: 1.5220... Generator Loss: 0.7975
Epoch 1/1... Discriminator Loss: 1.3514... Generator Loss: 0.7154
Epoch 1/1... Discriminator Loss: 1.4381... Generator Loss: 0.6122
Epoch 1/1... Discriminator Loss: 1.4019... Generator Loss: 0.8015
Epoch 1/1... Discriminator Loss: 1.3775... Generator Loss: 0.6795
Epoch 1/1... Discriminator Loss: 1.5094... Generator Loss: 0.6505
Epoch 1/1... Discriminator Loss: 1.3886... Generator Loss: 0.8945
Epoch 1/1... Discriminator Loss: 1.2913... Generator Loss: 0.7577
Epoch 1/1... Discriminator Loss: 1.3995... Generator Loss: 0.8156
Epoch 1/1... Discriminator Loss: 1.3822... Generator Loss: 1.0075
Epoch 1/1... Discriminator Loss: 1.3468... Generator Loss: 0.8362
Epoch 1/1... Discriminator Loss: 1.3397... Generator Loss: 0.7883
Epoch 1/1... Discriminator Loss: 1.4207... Generator Loss: 0.6443
Epoch 1/1... Discriminator Loss: 1.3468... Generator Loss: 0.8592
Epoch 1/1... Discriminator Loss: 1.2910... Generator Loss: 1.0245
Epoch 1/1... Discriminator Loss: 1.4161... Generator Loss: 0.7099
Epoch 1/1... Discriminator Loss: 1.2685... Generator Loss: 0.7752
Epoch 1/1... Discriminator Loss: 1.4594... Generator Loss: 0.5963
Epoch 1/1... Discriminator Loss: 1.3944... Generator Loss: 0.6550
Epoch 1/1... Discriminator Loss: 1.4211... Generator Loss: 0.6721
Epoch 1/1... Discriminator Loss: 1.5380... Generator Loss: 0.5198
Epoch 1/1... Discriminator Loss: 1.7133... Generator Loss: 0.5117
Epoch 1/1... Discriminator Loss: 1.3177... Generator Loss: 0.7063
Epoch 1/1... Discriminator Loss: 1.2869... Generator Loss: 0.8462
Epoch 1/1... Discriminator Loss: 1.4246... Generator Loss: 0.5751
Epoch 1/1... Discriminator Loss: 1.4802... Generator Loss: 0.6678
Epoch 1/1... Discriminator Loss: 1.4125... Generator Loss: 0.7507
Epoch 1/1... Discriminator Loss: 1.4047... Generator Loss: 0.8232
Epoch 1/1... Discriminator Loss: 1.3668... Generator Loss: 0.7420
Epoch 1/1... Discriminator Loss: 1.3612... Generator Loss: 0.6459
Epoch 1/1... Discriminator Loss: 1.3709... Generator Loss: 0.7703
Epoch 1/1... Discriminator Loss: 1.4291... Generator Loss: 0.6869
Epoch 1/1... Discriminator Loss: 1.3902... Generator Loss: 0.8225
Epoch 1/1... Discriminator Loss: 1.4088... Generator Loss: 0.7410
Epoch 1/1... Discriminator Loss: 1.4292... Generator Loss: 0.6479
Epoch 1/1... Discriminator Loss: 1.4299... Generator Loss: 0.6929
Epoch 1/1... Discriminator Loss: 1.4838... Generator Loss: 0.5611
Epoch 1/1... Discriminator Loss: 1.3368... Generator Loss: 0.7994
Epoch 1/1... Discriminator Loss: 1.3734... Generator Loss: 0.8155
Epoch 1/1... Discriminator Loss: 1.3913... Generator Loss: 0.8415
Epoch 1/1... Discriminator Loss: 1.3484... Generator Loss: 0.6982
Epoch 1/1... Discriminator Loss: 1.4710... Generator Loss: 0.6899
Epoch 1/1... Discriminator Loss: 1.3614... Generator Loss: 0.9830
Epoch 1/1... Discriminator Loss: 1.3164... Generator Loss: 0.7642
Epoch 1/1... Discriminator Loss: 1.3080... Generator Loss: 0.9238
Epoch 1/1... Discriminator Loss: 1.4243... Generator Loss: 0.8277
Epoch 1/1... Discriminator Loss: 1.3848... Generator Loss: 0.7589
Epoch 1/1... Discriminator Loss: 1.5260... Generator Loss: 0.5831
Epoch 1/1... Discriminator Loss: 1.2553... Generator Loss: 0.7193
Epoch 1/1... Discriminator Loss: 1.4541... Generator Loss: 0.7054
Epoch 1/1... Discriminator Loss: 1.4055... Generator Loss: 0.7198
Epoch 1/1... Discriminator Loss: 1.4480... Generator Loss: 0.7143
Epoch 1/1... Discriminator Loss: 1.3138... Generator Loss: 0.6293
Epoch 1/1... Discriminator Loss: 1.5802... Generator Loss: 0.4986
Epoch 1/1... Discriminator Loss: 1.4270... Generator Loss: 0.6948
Epoch 1/1... Discriminator Loss: 1.3638... Generator Loss: 0.7344
Epoch 1/1... Discriminator Loss: 1.4642... Generator Loss: 0.7751
Epoch 1/1... Discriminator Loss: 1.6020... Generator Loss: 0.7082
Epoch 1/1... Discriminator Loss: 1.4287... Generator Loss: 0.6551
Epoch 1/1... Discriminator Loss: 1.2752... Generator Loss: 0.8108
Epoch 1/1... Discriminator Loss: 1.4794... Generator Loss: 0.6822
Epoch 1/1... Discriminator Loss: 1.4709... Generator Loss: 0.7157
Epoch 1/1... Discriminator Loss: 1.3291... Generator Loss: 0.7120
Epoch 1/1... Discriminator Loss: 1.4338... Generator Loss: 0.5795
Epoch 1/1... Discriminator Loss: 1.3427... Generator Loss: 0.6867
Epoch 1/1... Discriminator Loss: 1.3685... Generator Loss: 0.7041
Epoch 1/1... Discriminator Loss: 1.4240... Generator Loss: 0.7104
Epoch 1/1... Discriminator Loss: 1.3830... Generator Loss: 0.6292
Epoch 1/1... Discriminator Loss: 1.2856... Generator Loss: 0.8663
Epoch 1/1... Discriminator Loss: 1.3697... Generator Loss: 0.7973
Epoch 1/1... Discriminator Loss: 1.4261... Generator Loss: 0.7380
Epoch 1/1... Discriminator Loss: 1.4168... Generator Loss: 0.6475
Epoch 1/1... Discriminator Loss: 1.3532... Generator Loss: 0.7465
Epoch 1/1... Discriminator Loss: 1.2823... Generator Loss: 0.8141
Epoch 1/1... Discriminator Loss: 1.2665... Generator Loss: 0.7858
Epoch 1/1... Discriminator Loss: 1.4750... Generator Loss: 0.5968
Epoch 1/1... Discriminator Loss: 1.4339... Generator Loss: 0.6360
Epoch 1/1... Discriminator Loss: 1.6242... Generator Loss: 0.5765
Epoch 1/1... Discriminator Loss: 1.3550... Generator Loss: 0.6570
Epoch 1/1... Discriminator Loss: 1.4287... Generator Loss: 0.6140
Epoch 1/1... Discriminator Loss: 1.4427... Generator Loss: 0.6918
Epoch 1/1... Discriminator Loss: 1.4218... Generator Loss: 0.6057
Epoch 1/1... Discriminator Loss: 1.2900... Generator Loss: 0.7421
Epoch 1/1... Discriminator Loss: 1.3293... Generator Loss: 0.7675
Epoch 1/1... Discriminator Loss: 1.2997... Generator Loss: 0.7921
Epoch 1/1... Discriminator Loss: 1.4284... Generator Loss: 0.6112
Epoch 1/1... Discriminator Loss: 1.4586... Generator Loss: 0.5534
Epoch 1/1... Discriminator Loss: 1.3528... Generator Loss: 0.8197
Epoch 1/1... Discriminator Loss: 1.3186... Generator Loss: 0.8072
Epoch 1/1... Discriminator Loss: 1.5014... Generator Loss: 0.6982
Epoch 1/1... Discriminator Loss: 1.3882... Generator Loss: 0.7169
Epoch 1/1... Discriminator Loss: 1.4579... Generator Loss: 0.8154
Epoch 1/1... Discriminator Loss: 1.3403... Generator Loss: 0.8166
Epoch 1/1... Discriminator Loss: 1.3673... Generator Loss: 0.6963
Epoch 1/1... Discriminator Loss: 1.3685... Generator Loss: 0.6717
Epoch 1/1... Discriminator Loss: 1.3219... Generator Loss: 0.7496
Epoch 1/1... Discriminator Loss: 1.4959... Generator Loss: 0.5855
Epoch 1/1... Discriminator Loss: 1.5162... Generator Loss: 0.7336
Epoch 1/1... Discriminator Loss: 1.4671... Generator Loss: 0.5446
Epoch 1/1... Discriminator Loss: 1.4379... Generator Loss: 0.8214
Epoch 1/1... Discriminator Loss: 1.6235... Generator Loss: 0.4889
Epoch 1/1... Discriminator Loss: 1.4947... Generator Loss: 0.6233
Epoch 1/1... Discriminator Loss: 1.5224... Generator Loss: 0.6542
Epoch 1/1... Discriminator Loss: 1.4510... Generator Loss: 0.7514
Epoch 1/1... Discriminator Loss: 1.3385... Generator Loss: 0.6203
Epoch 1/1... Discriminator Loss: 1.5499... Generator Loss: 0.5438
Epoch 1/1... Discriminator Loss: 1.3361... Generator Loss: 0.8122
Epoch 1/1... Discriminator Loss: 1.3541... Generator Loss: 0.7539
Epoch 1/1... Discriminator Loss: 1.4247... Generator Loss: 0.6395
Epoch 1/1... Discriminator Loss: 1.3304... Generator Loss: 0.7968
Epoch 1/1... Discriminator Loss: 1.3477... Generator Loss: 0.7180
Epoch 1/1... Discriminator Loss: 1.3919... Generator Loss: 0.6121
Epoch 1/1... Discriminator Loss: 1.3409... Generator Loss: 0.7303
Epoch 1/1... Discriminator Loss: 1.5033... Generator Loss: 0.6050
Epoch 1/1... Discriminator Loss: 1.5124... Generator Loss: 0.6370
Epoch 1/1... Discriminator Loss: 1.4301... Generator Loss: 0.7359
Epoch 1/1... Discriminator Loss: 1.4210... Generator Loss: 0.7879
Epoch 1/1... Discriminator Loss: 1.5068... Generator Loss: 0.6890
Epoch 1/1... Discriminator Loss: 1.4499... Generator Loss: 0.6330
Epoch 1/1... Discriminator Loss: 1.3536... Generator Loss: 0.7674
Epoch 1/1... Discriminator Loss: 1.4126... Generator Loss: 0.6858
Epoch 1/1... Discriminator Loss: 1.3376... Generator Loss: 0.8135
Epoch 1/1... Discriminator Loss: 1.4443... Generator Loss: 0.6318
Epoch 1/1... Discriminator Loss: 1.3572... Generator Loss: 0.6572
Epoch 1/1... Discriminator Loss: 1.3771... Generator Loss: 0.7096
Epoch 1/1... Discriminator Loss: 1.4055... Generator Loss: 0.6284
Epoch 1/1... Discriminator Loss: 1.5218... Generator Loss: 0.5376
Epoch 1/1... Discriminator Loss: 1.4452... Generator Loss: 0.6702
Epoch 1/1... Discriminator Loss: 1.3516... Generator Loss: 0.7741
Epoch 1/1... Discriminator Loss: 1.2554... Generator Loss: 0.7807
Epoch 1/1... Discriminator Loss: 1.4288... Generator Loss: 0.5577
Epoch 1/1... Discriminator Loss: 1.4324... Generator Loss: 0.6277
Epoch 1/1... Discriminator Loss: 1.5139... Generator Loss: 0.5248
Epoch 1/1... Discriminator Loss: 1.3593... Generator Loss: 0.7795
Epoch 1/1... Discriminator Loss: 1.6465... Generator Loss: 0.4513
Epoch 1/1... Discriminator Loss: 1.5082... Generator Loss: 0.6511
Epoch 1/1... Discriminator Loss: 1.4142... Generator Loss: 0.6811
Epoch 1/1... Discriminator Loss: 1.3444... Generator Loss: 0.8270
Epoch 1/1... Discriminator Loss: 1.5996... Generator Loss: 0.5419
Epoch 1/1... Discriminator Loss: 1.3597... Generator Loss: 0.8321
Epoch 1/1... Discriminator Loss: 1.3630... Generator Loss: 0.6636
Epoch 1/1... Discriminator Loss: 1.4043... Generator Loss: 0.6895
Epoch 1/1... Discriminator Loss: 1.2807... Generator Loss: 0.8319
Epoch 1/1... Discriminator Loss: 1.3266... Generator Loss: 0.7113
Epoch 1/1... Discriminator Loss: 1.3219... Generator Loss: 0.7212
Epoch 1/1... Discriminator Loss: 1.5303... Generator Loss: 0.7378
Epoch 1/1... Discriminator Loss: 1.4139... Generator Loss: 0.7717
Epoch 1/1... Discriminator Loss: 1.3512... Generator Loss: 0.6956
Epoch 1/1... Discriminator Loss: 1.2692... Generator Loss: 0.7295
Epoch 1/1... Discriminator Loss: 1.4064... Generator Loss: 0.6749
Epoch 1/1... Discriminator Loss: 1.5591... Generator Loss: 0.6293
Epoch 1/1... Discriminator Loss: 1.4013... Generator Loss: 0.7579
Epoch 1/1... Discriminator Loss: 1.4249... Generator Loss: 0.6355
Epoch 1/1... Discriminator Loss: 1.3162... Generator Loss: 0.7410
Epoch 1/1... Discriminator Loss: 1.3082... Generator Loss: 0.7979
Epoch 1/1... Discriminator Loss: 1.3946... Generator Loss: 0.6409
Epoch 1/1... Discriminator Loss: 1.2917... Generator Loss: 0.7572
Epoch 1/1... Discriminator Loss: 1.5021... Generator Loss: 0.5466
Epoch 1/1... Discriminator Loss: 1.3636... Generator Loss: 0.6765
Epoch 1/1... Discriminator Loss: 1.4171... Generator Loss: 0.6470
Epoch 1/1... Discriminator Loss: 1.4099... Generator Loss: 0.6808
Epoch 1/1... Discriminator Loss: 1.3551... Generator Loss: 0.7318
Epoch 1/1... Discriminator Loss: 1.4233... Generator Loss: 0.6835
Epoch 1/1... Discriminator Loss: 1.3615... Generator Loss: 0.6919
Epoch 1/1... Discriminator Loss: 1.3615... Generator Loss: 0.7900
Epoch 1/1... Discriminator Loss: 1.4149... Generator Loss: 0.7351
Epoch 1/1... Discriminator Loss: 1.4062... Generator Loss: 0.6674
Epoch 1/1... Discriminator Loss: 1.4309... Generator Loss: 0.6819
Epoch 1/1... Discriminator Loss: 1.4722... Generator Loss: 0.5950
Epoch 1/1... Discriminator Loss: 1.4724... Generator Loss: 0.5940
Epoch 1/1... Discriminator Loss: 1.4676... Generator Loss: 0.5745
Epoch 1/1... Discriminator Loss: 1.2755... Generator Loss: 0.8788
Epoch 1/1... Discriminator Loss: 1.4546... Generator Loss: 0.5724
Epoch 1/1... Discriminator Loss: 1.4273... Generator Loss: 0.6566
Epoch 1/1... Discriminator Loss: 1.4692... Generator Loss: 0.6250
Epoch 1/1... Discriminator Loss: 1.3770... Generator Loss: 0.7465
Epoch 1/1... Discriminator Loss: 1.4458... Generator Loss: 0.5848
Epoch 1/1... Discriminator Loss: 1.3802... Generator Loss: 0.6111
Epoch 1/1... Discriminator Loss: 1.3481... Generator Loss: 0.7435
Epoch 1/1... Discriminator Loss: 1.2687... Generator Loss: 0.7667
Epoch 1/1... Discriminator Loss: 1.5376... Generator Loss: 0.5402
Epoch 1/1... Discriminator Loss: 1.3642... Generator Loss: 0.9947
Epoch 1/1... Discriminator Loss: 1.4366... Generator Loss: 0.7543
Epoch 1/1... Discriminator Loss: 1.4442... Generator Loss: 0.6051
Epoch 1/1... Discriminator Loss: 1.4923... Generator Loss: 0.5858
Epoch 1/1... Discriminator Loss: 1.4768... Generator Loss: 0.6084
Epoch 1/1... Discriminator Loss: 1.3929... Generator Loss: 0.6489
Epoch 1/1... Discriminator Loss: 1.4549... Generator Loss: 0.6690
Epoch 1/1... Discriminator Loss: 1.2999... Generator Loss: 0.7529
Epoch 1/1... Discriminator Loss: 1.5822... Generator Loss: 0.5158
Epoch 1/1... Discriminator Loss: 1.3728... Generator Loss: 0.6166
Epoch 1/1... Discriminator Loss: 1.4855... Generator Loss: 0.6602
Epoch 1/1... Discriminator Loss: 1.4457... Generator Loss: 0.7080
Epoch 1/1... Discriminator Loss: 1.4216... Generator Loss: 0.6300
Epoch 1/1... Discriminator Loss: 1.3261... Generator Loss: 0.7365
Epoch 1/1... Discriminator Loss: 1.3225... Generator Loss: 0.7665
Epoch 1/1... Discriminator Loss: 1.4456... Generator Loss: 0.6181
Epoch 1/1... Discriminator Loss: 1.4355... Generator Loss: 0.6243
Epoch 1/1... Discriminator Loss: 1.5315... Generator Loss: 0.5306
Epoch 1/1... Discriminator Loss: 1.4375... Generator Loss: 0.5317
Epoch 1/1... Discriminator Loss: 1.3416... Generator Loss: 0.7157
Epoch 1/1... Discriminator Loss: 1.2045... Generator Loss: 0.7876
Epoch 1/1... Discriminator Loss: 1.5323... Generator Loss: 0.5274
Epoch 1/1... Discriminator Loss: 1.3441... Generator Loss: 0.7955
Epoch 1/1... Discriminator Loss: 1.4193... Generator Loss: 0.7027
Epoch 1/1... Discriminator Loss: 1.3704... Generator Loss: 0.6767
Epoch 1/1... Discriminator Loss: 1.4719... Generator Loss: 0.5892
Epoch 1/1... Discriminator Loss: 1.2954... Generator Loss: 0.6438
Epoch 1/1... Discriminator Loss: 1.4321... Generator Loss: 0.5599
Epoch 1/1... Discriminator Loss: 1.3813... Generator Loss: 0.8542
Epoch 1/1... Discriminator Loss: 1.3955... Generator Loss: 0.7242
Epoch 1/1... Discriminator Loss: 1.4944... Generator Loss: 0.5905
Epoch 1/1... Discriminator Loss: 1.1213... Generator Loss: 0.8174
Epoch 1/1... Discriminator Loss: 1.3709... Generator Loss: 0.7525
Epoch 1/1... Discriminator Loss: 1.5236... Generator Loss: 0.6777
Epoch 1/1... Discriminator Loss: 1.5049... Generator Loss: 0.5625
Epoch 1/1... Discriminator Loss: 1.5225... Generator Loss: 0.4982
Epoch 1/1... Discriminator Loss: 1.4201... Generator Loss: 0.6371
Epoch 1/1... Discriminator Loss: 1.3478... Generator Loss: 0.6445
Epoch 1/1... Discriminator Loss: 1.3260... Generator Loss: 0.7258
Epoch 1/1... Discriminator Loss: 1.4380... Generator Loss: 0.6353
Epoch 1/1... Discriminator Loss: 1.4038... Generator Loss: 0.6196
Epoch 1/1... Discriminator Loss: 1.5337... Generator Loss: 0.5780
Epoch 1/1... Discriminator Loss: 1.2741... Generator Loss: 0.7232
Epoch 1/1... Discriminator Loss: 1.3378... Generator Loss: 0.7608
Epoch 1/1... Discriminator Loss: 1.3913... Generator Loss: 0.6517
Epoch 1/1... Discriminator Loss: 1.5271... Generator Loss: 0.5518
Epoch 1/1... Discriminator Loss: 1.3962... Generator Loss: 0.6972
Epoch 1/1... Discriminator Loss: 1.4921... Generator Loss: 0.5454
Epoch 1/1... Discriminator Loss: 1.4565... Generator Loss: 0.5826
Epoch 1/1... Discriminator Loss: 1.4964... Generator Loss: 0.5454
Epoch 1/1... Discriminator Loss: 1.4624... Generator Loss: 0.6544
Epoch 1/1... Discriminator Loss: 1.5613... Generator Loss: 0.5468
Epoch 1/1... Discriminator Loss: 1.4731... Generator Loss: 0.5433
Epoch 1/1... Discriminator Loss: 1.3234... Generator Loss: 0.7983
Epoch 1/1... Discriminator Loss: 1.5355... Generator Loss: 0.5877
Epoch 1/1... Discriminator Loss: 1.3323... Generator Loss: 0.6843
Epoch 1/1... Discriminator Loss: 1.5041... Generator Loss: 0.5733
Epoch 1/1... Discriminator Loss: 1.5497... Generator Loss: 0.6163
Epoch 1/1... Discriminator Loss: 1.6587... Generator Loss: 0.5656
Epoch 1/1... Discriminator Loss: 1.4554... Generator Loss: 0.5620
Epoch 1/1... Discriminator Loss: 1.3114... Generator Loss: 0.7092
Epoch 1/1... Discriminator Loss: 1.3324... Generator Loss: 0.8658
Epoch 1/1... Discriminator Loss: 1.5569... Generator Loss: 0.5689
Epoch 1/1... Discriminator Loss: 1.2925... Generator Loss: 0.8284
Epoch 1/1... Discriminator Loss: 1.4893... Generator Loss: 0.5491
Epoch 1/1... Discriminator Loss: 1.4280... Generator Loss: 0.6037
Epoch 1/1... Discriminator Loss: 1.5559... Generator Loss: 0.5865
Epoch 1/1... Discriminator Loss: 1.0034... Generator Loss: 1.0205
Epoch 1/1... Discriminator Loss: 1.5621... Generator Loss: 0.6337
Epoch 1/1... Discriminator Loss: 1.3278... Generator Loss: 0.8272
Epoch 1/1... Discriminator Loss: 1.2859... Generator Loss: 0.8439
Epoch 1/1... Discriminator Loss: 1.3550... Generator Loss: 0.7894
Epoch 1/1... Discriminator Loss: 1.4455... Generator Loss: 0.5946
Epoch 1/1... Discriminator Loss: 1.4565... Generator Loss: 0.6130
Epoch 1/1... Discriminator Loss: 1.3662... Generator Loss: 0.6106
Epoch 1/1... Discriminator Loss: 1.3723... Generator Loss: 0.6721
Epoch 1/1... Discriminator Loss: 1.7141... Generator Loss: 0.4725
Epoch 1/1... Discriminator Loss: 1.4519... Generator Loss: 0.5187
Epoch 1/1... Discriminator Loss: 1.6092... Generator Loss: 0.5464
Epoch 1/1... Discriminator Loss: 1.3307... Generator Loss: 0.6969
Epoch 1/1... Discriminator Loss: 1.3306... Generator Loss: 0.7040
Epoch 1/1... Discriminator Loss: 1.3390... Generator Loss: 0.8732
Epoch 1/1... Discriminator Loss: 1.4226... Generator Loss: 0.6403
Epoch 1/1... Discriminator Loss: 1.5216... Generator Loss: 0.6184
Epoch 1/1... Discriminator Loss: 1.3287... Generator Loss: 0.7333
Epoch 1/1... Discriminator Loss: 1.3352... Generator Loss: 0.7362
Epoch 1/1... Discriminator Loss: 1.4484... Generator Loss: 0.6359
Epoch 1/1... Discriminator Loss: 1.4617... Generator Loss: 0.6329
Epoch 1/1... Discriminator Loss: 1.4386... Generator Loss: 0.6461
Epoch 1/1... Discriminator Loss: 1.2813... Generator Loss: 0.8302
Epoch 1/1... Discriminator Loss: 1.4624... Generator Loss: 0.7917
Epoch 1/1... Discriminator Loss: 1.5441... Generator Loss: 0.5018
Epoch 1/1... Discriminator Loss: 1.3912... Generator Loss: 0.6803
Epoch 1/1... Discriminator Loss: 1.4588... Generator Loss: 0.6622
Epoch 1/1... Discriminator Loss: 1.3889... Generator Loss: 0.6619
Epoch 1/1... Discriminator Loss: 1.3815... Generator Loss: 0.6133
Epoch 1/1... Discriminator Loss: 1.3947... Generator Loss: 0.6753
Epoch 1/1... Discriminator Loss: 1.4261... Generator Loss: 0.6403
Epoch 1/1... Discriminator Loss: 1.4673... Generator Loss: 0.6224
Epoch 1/1... Discriminator Loss: 1.4156... Generator Loss: 0.6379
Epoch 1/1... Discriminator Loss: 1.3746... Generator Loss: 0.7111
Epoch 1/1... Discriminator Loss: 1.4984... Generator Loss: 0.6074
Epoch 1/1... Discriminator Loss: 1.4153... Generator Loss: 0.6650
Epoch 1/1... Discriminator Loss: 1.5703... Generator Loss: 0.4638
Epoch 1/1... Discriminator Loss: 1.3442... Generator Loss: 0.7077
Epoch 1/1... Discriminator Loss: 1.4684... Generator Loss: 0.5832
Epoch 1/1... Discriminator Loss: 1.3561... Generator Loss: 0.6528
Epoch 1/1... Discriminator Loss: 1.4031... Generator Loss: 0.5783
Epoch 1/1... Discriminator Loss: 1.3817... Generator Loss: 0.7179
Epoch 1/1... Discriminator Loss: 1.5025... Generator Loss: 0.4969
Epoch 1/1... Discriminator Loss: 1.4179... Generator Loss: 0.6895
Epoch 1/1... Discriminator Loss: 1.4437... Generator Loss: 0.7901
Epoch 1/1... Discriminator Loss: 1.3861... Generator Loss: 0.7129
Epoch 1/1... Discriminator Loss: 1.5884... Generator Loss: 0.5327
Epoch 1/1... Discriminator Loss: 1.4319... Generator Loss: 0.7089
Epoch 1/1... Discriminator Loss: 1.4917... Generator Loss: 0.6025
Epoch 1/1... Discriminator Loss: 1.5039... Generator Loss: 0.5639
Epoch 1/1... Discriminator Loss: 1.3038... Generator Loss: 1.1093
Epoch 1/1... Discriminator Loss: 1.4490... Generator Loss: 0.6675
Epoch 1/1... Discriminator Loss: 1.3504... Generator Loss: 0.7568
Epoch 1/1... Discriminator Loss: 1.4036... Generator Loss: 0.6700
Epoch 1/1... Discriminator Loss: 1.2795... Generator Loss: 0.7732
Epoch 1/1... Discriminator Loss: 1.3069... Generator Loss: 0.7390
Epoch 1/1... Discriminator Loss: 1.4464... Generator Loss: 0.6238
Epoch 1/1... Discriminator Loss: 1.3644... Generator Loss: 0.6468
Epoch 1/1... Discriminator Loss: 1.3509... Generator Loss: 0.7099
Epoch 1/1... Discriminator Loss: 1.3208... Generator Loss: 0.7611
Epoch 1/1... Discriminator Loss: 1.4597... Generator Loss: 0.6013
Epoch 1/1... Discriminator Loss: 1.5453... Generator Loss: 0.6360
Epoch 1/1... Discriminator Loss: 1.3489... Generator Loss: 0.5996
Epoch 1/1... Discriminator Loss: 1.4462... Generator Loss: 0.6024
Epoch 1/1... Discriminator Loss: 1.5209... Generator Loss: 0.5826
Epoch 1/1... Discriminator Loss: 1.4500... Generator Loss: 0.5933
Epoch 1/1... Discriminator Loss: 1.3101... Generator Loss: 0.7147
Epoch 1/1... Discriminator Loss: 1.5059... Generator Loss: 0.5486
Epoch 1/1... Discriminator Loss: 1.3809... Generator Loss: 0.7611
Epoch 1/1... Discriminator Loss: 1.3980... Generator Loss: 0.6900
Epoch 1/1... Discriminator Loss: 1.2988... Generator Loss: 0.6961
Epoch 1/1... Discriminator Loss: 1.6025... Generator Loss: 0.4958
Epoch 1/1... Discriminator Loss: 1.3130... Generator Loss: 0.7038
Epoch 1/1... Discriminator Loss: 1.3025... Generator Loss: 0.7358
Epoch 1/1... Discriminator Loss: 1.3088... Generator Loss: 0.7316
Epoch 1/1... Discriminator Loss: 1.3712... Generator Loss: 0.7315
Epoch 1/1... Discriminator Loss: 1.3372... Generator Loss: 0.7276
Epoch 1/1... Discriminator Loss: 1.6665... Generator Loss: 0.5611
Epoch 1/1... Discriminator Loss: 1.3710... Generator Loss: 0.7359
Epoch 1/1... Discriminator Loss: 1.2813... Generator Loss: 0.7161
Epoch 1/1... Discriminator Loss: 1.4649... Generator Loss: 0.6798
Epoch 1/1... Discriminator Loss: 1.4483... Generator Loss: 0.5671
Epoch 1/1... Discriminator Loss: 1.5202... Generator Loss: 0.5126
Epoch 1/1... Discriminator Loss: 1.4752... Generator Loss: 0.5519
Epoch 1/1... Discriminator Loss: 1.3696... Generator Loss: 0.7007
Epoch 1/1... Discriminator Loss: 1.5259... Generator Loss: 0.4948
Epoch 1/1... Discriminator Loss: 1.4893... Generator Loss: 0.5767
Epoch 1/1... Discriminator Loss: 1.3760... Generator Loss: 0.7103
Epoch 1/1... Discriminator Loss: 1.3990... Generator Loss: 0.6172
Epoch 1/1... Discriminator Loss: 1.4586... Generator Loss: 0.6387
Epoch 1/1... Discriminator Loss: 1.3955... Generator Loss: 0.6884
Epoch 1/1... Discriminator Loss: 1.3162... Generator Loss: 0.7639
Epoch 1/1... Discriminator Loss: 1.2592... Generator Loss: 0.9159
Epoch 1/1... Discriminator Loss: 1.6291... Generator Loss: 0.4936
Epoch 1/1... Discriminator Loss: 1.3633... Generator Loss: 0.7066
Epoch 1/1... Discriminator Loss: 1.4504... Generator Loss: 0.5496
Epoch 1/1... Discriminator Loss: 1.3946... Generator Loss: 0.6562
Epoch 1/1... Discriminator Loss: 1.4498... Generator Loss: 0.5467
Epoch 1/1... Discriminator Loss: 1.3760... Generator Loss: 0.6410
Epoch 1/1... Discriminator Loss: 1.3370... Generator Loss: 0.8133
Epoch 1/1... Discriminator Loss: 1.3573... Generator Loss: 0.6769
Epoch 1/1... Discriminator Loss: 1.5211... Generator Loss: 0.6180
Epoch 1/1... Discriminator Loss: 1.4254... Generator Loss: 0.7344
Epoch 1/1... Discriminator Loss: 1.3537... Generator Loss: 0.6456
Epoch 1/1... Discriminator Loss: 1.5661... Generator Loss: 0.5572
Epoch 1/1... Discriminator Loss: 1.3291... Generator Loss: 0.8021
Epoch 1/1... Discriminator Loss: 1.4589... Generator Loss: 0.6486
Epoch 1/1... Discriminator Loss: 1.4470... Generator Loss: 0.5810
Epoch 1/1... Discriminator Loss: 1.5454... Generator Loss: 0.5987
Epoch 1/1... Discriminator Loss: 1.5544... Generator Loss: 0.4898
Epoch 1/1... Discriminator Loss: 1.4080... Generator Loss: 0.6527
Epoch 1/1... Discriminator Loss: 1.2617... Generator Loss: 0.7763
Epoch 1/1... Discriminator Loss: 1.4221... Generator Loss: 0.5833
Epoch 1/1... Discriminator Loss: 1.5645... Generator Loss: 0.5901
Epoch 1/1... Discriminator Loss: 1.4593... Generator Loss: 0.5529
Epoch 1/1... Discriminator Loss: 1.5495... Generator Loss: 0.5107
Epoch 1/1... Discriminator Loss: 1.5621... Generator Loss: 0.5173
Epoch 1/1... Discriminator Loss: 1.4314... Generator Loss: 0.6465
Epoch 1/1... Discriminator Loss: 1.5341... Generator Loss: 0.6489
Epoch 1/1... Discriminator Loss: 1.4171... Generator Loss: 0.6113
Epoch 1/1... Discriminator Loss: 1.5692... Generator Loss: 0.5317
Epoch 1/1... Discriminator Loss: 1.4842... Generator Loss: 0.7383
Epoch 1/1... Discriminator Loss: 1.4881... Generator Loss: 0.6090
Epoch 1/1... Discriminator Loss: 1.6136... Generator Loss: 0.5097
Epoch 1/1... Discriminator Loss: 1.3730... Generator Loss: 0.7244
Epoch 1/1... Discriminator Loss: 1.2443... Generator Loss: 0.6885
Epoch 1/1... Discriminator Loss: 1.5589... Generator Loss: 0.6156
Epoch 1/1... Discriminator Loss: 1.5059... Generator Loss: 0.6469
Epoch 1/1... Discriminator Loss: 1.5602... Generator Loss: 0.5496
Epoch 1/1... Discriminator Loss: 1.3615... Generator Loss: 0.7127
Epoch 1/1... Discriminator Loss: 1.4591... Generator Loss: 0.5897
Epoch 1/1... Discriminator Loss: 1.3920... Generator Loss: 0.5389
Epoch 1/1... Discriminator Loss: 1.4899... Generator Loss: 0.5267
Epoch 1/1... Discriminator Loss: 1.2039... Generator Loss: 0.8562
Epoch 1/1... Discriminator Loss: 1.3760... Generator Loss: 0.6986
Epoch 1/1... Discriminator Loss: 1.3598... Generator Loss: 0.6691
Epoch 1/1... Discriminator Loss: 1.5318... Generator Loss: 0.5670
Epoch 1/1... Discriminator Loss: 1.5929... Generator Loss: 0.5086
Epoch 1/1... Discriminator Loss: 1.5352... Generator Loss: 0.5637
Epoch 1/1... Discriminator Loss: 1.4017... Generator Loss: 0.7693
Epoch 1/1... Discriminator Loss: 1.4300... Generator Loss: 0.7083
Epoch 1/1... Discriminator Loss: 1.3286... Generator Loss: 0.7318
Epoch 1/1... Discriminator Loss: 1.4231... Generator Loss: 0.5682
Epoch 1/1... Discriminator Loss: 1.2635... Generator Loss: 0.7339
Epoch 1/1... Discriminator Loss: 1.4732... Generator Loss: 0.5763
Epoch 1/1... Discriminator Loss: 1.3354... Generator Loss: 0.7994
Epoch 1/1... Discriminator Loss: 1.4436... Generator Loss: 0.6118
Epoch 1/1... Discriminator Loss: 1.4434... Generator Loss: 0.6707
Epoch 1/1... Discriminator Loss: 1.4641... Generator Loss: 0.5974
Epoch 1/1... Discriminator Loss: 1.4412... Generator Loss: 0.7128
Epoch 1/1... Discriminator Loss: 1.3908... Generator Loss: 0.6861
Epoch 1/1... Discriminator Loss: 1.4799... Generator Loss: 0.5302
Epoch 1/1... Discriminator Loss: 1.6094... Generator Loss: 0.4624
Epoch 1/1... Discriminator Loss: 1.7093... Generator Loss: 0.4993
Epoch 1/1... Discriminator Loss: 1.4124... Generator Loss: 0.6635
Epoch 1/1... Discriminator Loss: 1.4733... Generator Loss: 0.5568
Epoch 1/1... Discriminator Loss: 1.4934... Generator Loss: 0.5097
Epoch 1/1... Discriminator Loss: 1.6458... Generator Loss: 0.4541
Epoch 1/1... Discriminator Loss: 1.5852... Generator Loss: 0.5300
Epoch 1/1... Discriminator Loss: 1.3183... Generator Loss: 0.7721
Epoch 1/1... Discriminator Loss: 1.6769... Generator Loss: 0.4688
Epoch 1/1... Discriminator Loss: 1.3107... Generator Loss: 0.6624
Epoch 1/1... Discriminator Loss: 1.3553... Generator Loss: 0.7219
Epoch 1/1... Discriminator Loss: 1.3694... Generator Loss: 0.6218
Epoch 1/1... Discriminator Loss: 1.4290... Generator Loss: 0.6474
Epoch 1/1... Discriminator Loss: 1.4121... Generator Loss: 0.6567
Epoch 1/1... Discriminator Loss: 1.3089... Generator Loss: 0.6787
Epoch 1/1... Discriminator Loss: 1.4351... Generator Loss: 0.6301
Epoch 1/1... Discriminator Loss: 1.4187... Generator Loss: 0.5772
Epoch 1/1... Discriminator Loss: 1.2893... Generator Loss: 0.7367
Epoch 1/1... Discriminator Loss: 1.2070... Generator Loss: 0.9115
Epoch 1/1... Discriminator Loss: 1.3508... Generator Loss: 0.7376
Epoch 1/1... Discriminator Loss: 1.4763... Generator Loss: 0.6192
Epoch 1/1... Discriminator Loss: 1.3093... Generator Loss: 0.6506
Epoch 1/1... Discriminator Loss: 1.5272... Generator Loss: 0.5141
Epoch 1/1... Discriminator Loss: 1.3389... Generator Loss: 0.7448
Epoch 1/1... Discriminator Loss: 1.5070... Generator Loss: 0.5657
Epoch 1/1... Discriminator Loss: 1.5204... Generator Loss: 0.5388
Epoch 1/1... Discriminator Loss: 1.3189... Generator Loss: 0.7282
Epoch 1/1... Discriminator Loss: 1.5215... Generator Loss: 0.6007
Epoch 1/1... Discriminator Loss: 1.6097... Generator Loss: 0.4649
Epoch 1/1... Discriminator Loss: 1.3550... Generator Loss: 0.6077
Epoch 1/1... Discriminator Loss: 1.2511... Generator Loss: 0.7614
Epoch 1/1... Discriminator Loss: 1.3844... Generator Loss: 0.7873
Epoch 1/1... Discriminator Loss: 1.4025... Generator Loss: 0.6080
Epoch 1/1... Discriminator Loss: 1.5106... Generator Loss: 0.5966
Epoch 1/1... Discriminator Loss: 1.1653... Generator Loss: 0.8214
Epoch 1/1... Discriminator Loss: 1.5030... Generator Loss: 0.5630
Epoch 1/1... Discriminator Loss: 1.5269... Generator Loss: 0.5444
Epoch 1/1... Discriminator Loss: 1.5090... Generator Loss: 0.4977
Epoch 1/1... Discriminator Loss: 1.3973... Generator Loss: 0.6358
Epoch 1/1... Discriminator Loss: 1.4402... Generator Loss: 0.5519
Epoch 1/1... Discriminator Loss: 1.3281... Generator Loss: 0.7918
Epoch 1/1... Discriminator Loss: 1.5383... Generator Loss: 0.5030
Epoch 1/1... Discriminator Loss: 1.3050... Generator Loss: 0.8083
Epoch 1/1... Discriminator Loss: 1.4044... Generator Loss: 0.6258
Epoch 1/1... Discriminator Loss: 1.3584... Generator Loss: 0.7187
Epoch 1/1... Discriminator Loss: 1.4973... Generator Loss: 0.6939
Epoch 1/1... Discriminator Loss: 1.2830... Generator Loss: 0.8372
Epoch 1/1... Discriminator Loss: 1.4695... Generator Loss: 0.5764
Epoch 1/1... Discriminator Loss: 1.2694... Generator Loss: 0.8570
Epoch 1/1... Discriminator Loss: 1.4862... Generator Loss: 0.5614
Epoch 1/1... Discriminator Loss: 1.4715... Generator Loss: 0.6043
Epoch 1/1... Discriminator Loss: 1.5808... Generator Loss: 0.6248
Epoch 1/1... Discriminator Loss: 1.5655... Generator Loss: 0.5190
Epoch 1/1... Discriminator Loss: 1.4608... Generator Loss: 0.6865
Epoch 1/1... Discriminator Loss: 1.5029... Generator Loss: 0.5110
Epoch 1/1... Discriminator Loss: 1.4536... Generator Loss: 0.6087
Epoch 1/1... Discriminator Loss: 1.3984... Generator Loss: 0.6060
Epoch 1/1... Discriminator Loss: 1.3531... Generator Loss: 0.6269
Epoch 1/1... Discriminator Loss: 1.3975... Generator Loss: 0.5373
Epoch 1/1... Discriminator Loss: 1.3981... Generator Loss: 0.7295
Epoch 1/1... Discriminator Loss: 1.3654... Generator Loss: 0.6761
Epoch 1/1... Discriminator Loss: 1.4193... Generator Loss: 0.6965
Epoch 1/1... Discriminator Loss: 1.3842... Generator Loss: 0.6394
Epoch 1/1... Discriminator Loss: 1.3340... Generator Loss: 0.6317
Epoch 1/1... Discriminator Loss: 1.4003... Generator Loss: 0.6116
Epoch 1/1... Discriminator Loss: 1.4045... Generator Loss: 0.6269
Epoch 1/1... Discriminator Loss: 1.4595... Generator Loss: 0.5358
Epoch 1/1... Discriminator Loss: 1.4775... Generator Loss: 0.5962
Epoch 1/1... Discriminator Loss: 1.5158... Generator Loss: 0.5524
Epoch 1/1... Discriminator Loss: 1.5479... Generator Loss: 0.5551
Epoch 1/1... Discriminator Loss: 1.3589... Generator Loss: 0.7188
Epoch 1/1... Discriminator Loss: 1.4836... Generator Loss: 0.5655
Epoch 1/1... Discriminator Loss: 1.3427... Generator Loss: 0.6507
Epoch 1/1... Discriminator Loss: 1.4083... Generator Loss: 0.7275
Epoch 1/1... Discriminator Loss: 1.3376... Generator Loss: 0.7050
Epoch 1/1... Discriminator Loss: 1.4915... Generator Loss: 0.5289
Epoch 1/1... Discriminator Loss: 1.6286... Generator Loss: 0.4502
Epoch 1/1... Discriminator Loss: 1.4483... Generator Loss: 0.6925
Epoch 1/1... Discriminator Loss: 1.3737... Generator Loss: 0.7249
Epoch 1/1... Discriminator Loss: 1.3735... Generator Loss: 0.7617
Epoch 1/1... Discriminator Loss: 1.6073... Generator Loss: 0.5630
Epoch 1/1... Discriminator Loss: 1.3971... Generator Loss: 0.6986
Epoch 1/1... Discriminator Loss: 1.3583... Generator Loss: 0.6573
Epoch 1/1... Discriminator Loss: 1.4382... Generator Loss: 0.6195
Epoch 1/1... Discriminator Loss: 1.5200... Generator Loss: 0.5860
Epoch 1/1... Discriminator Loss: 1.3109... Generator Loss: 0.7117
Epoch 1/1... Discriminator Loss: 1.4937... Generator Loss: 0.4968
Epoch 1/1... Discriminator Loss: 1.3396... Generator Loss: 0.7044
Epoch 1/1... Discriminator Loss: 1.3577... Generator Loss: 0.8915
Epoch 1/1... Discriminator Loss: 1.2829... Generator Loss: 0.7038
Epoch 1/1... Discriminator Loss: 1.1168... Generator Loss: 0.9825
Epoch 1/1... Discriminator Loss: 1.4314... Generator Loss: 0.5827
Epoch 1/1... Discriminator Loss: 1.0515... Generator Loss: 1.0636
Epoch 1/1... Discriminator Loss: 1.5997... Generator Loss: 0.4305
Epoch 1/1... Discriminator Loss: 1.3837... Generator Loss: 0.6339
Epoch 1/1... Discriminator Loss: 1.4118... Generator Loss: 0.5852
Epoch 1/1... Discriminator Loss: 1.3264... Generator Loss: 0.7551
Epoch 1/1... Discriminator Loss: 1.4031... Generator Loss: 0.5967
Epoch 1/1... Discriminator Loss: 1.2827... Generator Loss: 0.7732
Epoch 1/1... Discriminator Loss: 1.4420... Generator Loss: 0.5020
Epoch 1/1... Discriminator Loss: 1.5850... Generator Loss: 0.5335
Epoch 1/1... Discriminator Loss: 1.4050... Generator Loss: 0.5962
Epoch 1/1... Discriminator Loss: 1.5166... Generator Loss: 0.6662
Epoch 1/1... Discriminator Loss: 1.4560... Generator Loss: 0.5293
Epoch 1/1... Discriminator Loss: 1.6243... Generator Loss: 0.5295
Epoch 1/1... Discriminator Loss: 1.3245... Generator Loss: 0.6568
Epoch 1/1... Discriminator Loss: 1.4214... Generator Loss: 0.6323
Epoch 1/1... Discriminator Loss: 1.6012... Generator Loss: 0.4407
Epoch 1/1... Discriminator Loss: 1.4633... Generator Loss: 0.5296
Epoch 1/1... Discriminator Loss: 1.4301... Generator Loss: 0.5312
Epoch 1/1... Discriminator Loss: 1.5670... Generator Loss: 0.4543
Epoch 1/1... Discriminator Loss: 1.3852... Generator Loss: 0.7046
Epoch 1/1... Discriminator Loss: 1.2926... Generator Loss: 0.7162
Epoch 1/1... Discriminator Loss: 1.4547... Generator Loss: 0.5853
Epoch 1/1... Discriminator Loss: 1.1491... Generator Loss: 0.8791
Epoch 1/1... Discriminator Loss: 1.4772... Generator Loss: 0.8075
Epoch 1/1... Discriminator Loss: 1.4469... Generator Loss: 0.5870
Epoch 1/1... Discriminator Loss: 1.5643... Generator Loss: 0.5000
Epoch 1/1... Discriminator Loss: 1.3594... Generator Loss: 0.7402
Epoch 1/1... Discriminator Loss: 1.3550... Generator Loss: 0.6602
Epoch 1/1... Discriminator Loss: 1.3061... Generator Loss: 0.6996
Epoch 1/1... Discriminator Loss: 1.3778... Generator Loss: 0.6888
Epoch 1/1... Discriminator Loss: 1.5059... Generator Loss: 0.5511
Epoch 1/1... Discriminator Loss: 1.4575... Generator Loss: 0.6190
Epoch 1/1... Discriminator Loss: 1.4089... Generator Loss: 0.7390
Epoch 1/1... Discriminator Loss: 1.4249... Generator Loss: 0.5665
Epoch 1/1... Discriminator Loss: 1.7088... Generator Loss: 0.3876
Epoch 1/1... Discriminator Loss: 1.5002... Generator Loss: 0.4973
Epoch 1/1... Discriminator Loss: 1.5621... Generator Loss: 0.5099
Epoch 1/1... Discriminator Loss: 1.2686... Generator Loss: 0.8187
Epoch 1/1... Discriminator Loss: 1.1859... Generator Loss: 0.8247
Epoch 1/1... Discriminator Loss: 1.3888... Generator Loss: 0.5950
Epoch 1/1... Discriminator Loss: 1.4898... Generator Loss: 0.5822
Epoch 1/1... Discriminator Loss: 1.2977... Generator Loss: 0.5770
Epoch 1/1... Discriminator Loss: 1.2641... Generator Loss: 0.8169
Epoch 1/1... Discriminator Loss: 1.4413... Generator Loss: 0.5567
Epoch 1/1... Discriminator Loss: 1.3877... Generator Loss: 0.6466
Epoch 1/1... Discriminator Loss: 1.4852... Generator Loss: 0.5460
Epoch 1/1... Discriminator Loss: 1.2620... Generator Loss: 0.7230
Epoch 1/1... Discriminator Loss: 1.5425... Generator Loss: 0.5636
Epoch 1/1... Discriminator Loss: 1.3198... Generator Loss: 0.6165
Epoch 1/1... Discriminator Loss: 1.3873... Generator Loss: 0.6370
Epoch 1/1... Discriminator Loss: 1.3922... Generator Loss: 0.6169
Epoch 1/1... Discriminator Loss: 1.3760... Generator Loss: 0.6243
Epoch 1/1... Discriminator Loss: 1.5423... Generator Loss: 0.5446
Epoch 1/1... Discriminator Loss: 1.3448... Generator Loss: 0.6202
Epoch 1/1... Discriminator Loss: 1.4228... Generator Loss: 0.5267
Epoch 1/1... Discriminator Loss: 1.4334... Generator Loss: 0.6357

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.


In [ ]: