In [2]:
# coding: utf-8

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)


WARNING:tensorflow:From <ipython-input-2-01cbae6e9ee7>:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-images-idx3-ubyte.gz
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: __init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.

In [3]:
print mnist.train.images.shape


(55000, 784)

In [5]:
print mnist.train.labels.shape


(55000, 10)

In [6]:
print mnist.train.images[0,:]


[0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.3803922  0.37647063 0.3019608
 0.46274513 0.2392157  0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.3529412
 0.5411765  0.9215687  0.9215687  0.9215687  0.9215687  0.9215687
 0.9215687  0.9843138  0.9843138  0.9725491  0.9960785  0.9607844
 0.9215687  0.74509805 0.08235294 0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.54901963 0.9843138  0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.7411765  0.09019608 0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.8862746  0.9960785  0.81568635 0.7803922  0.7803922  0.7803922
 0.7803922  0.54509807 0.2392157  0.2392157  0.2392157  0.2392157
 0.2392157  0.5019608  0.8705883  0.9960785  0.9960785  0.7411765
 0.08235294 0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.14901961 0.32156864
 0.0509804  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.13333334 0.8352942  0.9960785  0.9960785  0.45098042 0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.32941177
 0.9960785  0.9960785  0.9176471  0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.32941177 0.9960785  0.9960785
 0.9176471  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.4156863  0.6156863  0.9960785  0.9960785  0.95294124 0.20000002
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.09803922
 0.45882356 0.8941177  0.8941177  0.8941177  0.9921569  0.9960785
 0.9960785  0.9960785  0.9960785  0.94117653 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.26666668 0.4666667  0.86274517 0.9960785  0.9960785
 0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
 0.9960785  0.5568628  0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.14509805 0.73333335 0.9921569
 0.9960785  0.9960785  0.9960785  0.8745099  0.8078432  0.8078432
 0.29411766 0.26666668 0.8431373  0.9960785  0.9960785  0.45882356
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.4431373  0.8588236  0.9960785  0.9490197  0.89019614 0.45098042
 0.34901962 0.12156864 0.         0.         0.         0.
 0.7843138  0.9960785  0.9450981  0.16078432 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.6627451  0.9960785
 0.6901961  0.24313727 0.         0.         0.         0.
 0.         0.         0.         0.18823531 0.9058824  0.9960785
 0.9176471  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.07058824 0.48627454 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.32941177 0.9960785  0.9960785  0.6509804  0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.54509807
 0.9960785  0.9333334  0.22352943 0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.8235295  0.9803922  0.9960785  0.65882355
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.9490197  0.9960785  0.93725497 0.22352943 0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.34901962 0.9843138  0.9450981
 0.3372549  0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.01960784 0.8078432  0.96470594 0.6156863  0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.01568628 0.45882356
 0.27058825 0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.         0.         0.
 0.         0.         0.         0.        ]

In [38]:
image0 = mnist.train.images[0,:].reshape(28,28)

In [8]:
print image0


[[0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.3803922
  0.37647063 0.3019608  0.46274513 0.2392157  0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.3529412  0.5411765  0.9215687
  0.9215687  0.9215687  0.9215687  0.9215687  0.9215687  0.9843138
  0.9843138  0.9725491  0.9960785  0.9607844  0.9215687  0.74509805
  0.08235294 0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.54901963 0.9843138  0.9960785  0.9960785
  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
  0.7411765  0.09019608 0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.8862746  0.9960785  0.81568635 0.7803922
  0.7803922  0.7803922  0.7803922  0.54509807 0.2392157  0.2392157
  0.2392157  0.2392157  0.2392157  0.5019608  0.8705883  0.9960785
  0.9960785  0.7411765  0.08235294 0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.14901961 0.32156864 0.0509804  0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.13333334 0.8352942
  0.9960785  0.9960785  0.45098042 0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.32941177
  0.9960785  0.9960785  0.9176471  0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.32941177
  0.9960785  0.9960785  0.9176471  0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.4156863  0.6156863
  0.9960785  0.9960785  0.95294124 0.20000002 0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.09803922
  0.45882356 0.8941177  0.8941177  0.8941177  0.9921569  0.9960785
  0.9960785  0.9960785  0.9960785  0.94117653 0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.26666668 0.4666667  0.86274517
  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785  0.9960785
  0.9960785  0.9960785  0.9960785  0.5568628  0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.14509805 0.73333335 0.9921569  0.9960785  0.9960785
  0.9960785  0.8745099  0.8078432  0.8078432  0.29411766 0.26666668
  0.8431373  0.9960785  0.9960785  0.45882356 0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.4431373  0.8588236  0.9960785  0.9490197  0.89019614 0.45098042
  0.34901962 0.12156864 0.         0.         0.         0.
  0.7843138  0.9960785  0.9450981  0.16078432 0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.6627451  0.9960785  0.6901961  0.24313727 0.         0.
  0.         0.         0.         0.         0.         0.18823531
  0.9058824  0.9960785  0.9176471  0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.07058824 0.48627454 0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.32941177
  0.9960785  0.9960785  0.6509804  0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.54509807
  0.9960785  0.9333334  0.22352943 0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.8235295  0.9803922
  0.9960785  0.65882355 0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.9490197  0.9960785
  0.93725497 0.22352943 0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.34901962 0.9843138  0.9450981
  0.3372549  0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.01960784 0.8078432  0.96470594 0.6156863
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.01568628 0.45882356 0.27058825 0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]
 [0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.         0.         0.
  0.         0.         0.         0.        ]]

In [39]:
%pylab
%matplotlib inline

from matplotlib.pyplot import imshow
from PIL import Image
import numpy as np

for i in xrange(28):
    for j in xrange(28):
        image0[i,j] = image0[i,j] * 255

a = Image.fromarray(image0)
imshow(a)


Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib
Out[39]:
<matplotlib.image.AxesImage at 0x7f8e41c85c10>

In [37]:
print image0


0.0

In [ ]: