In [3]:
import tensorflow as tf
help(tf.boolean_mask)
Help on function boolean_mask in module tensorflow.python.ops.array_ops:
boolean_mask(tensor, mask, name='boolean_mask')
Apply boolean mask to tensor. Numpy equivalent is `tensor[mask]`.
```python
# 1-D example
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])
boolean_mask(tensor, mask) ==> [0, 2]
```
In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match
the first K dimensions of `tensor`'s shape. We then have:
`boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]`
where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order).
Args:
tensor: N-D tensor.
mask: K-D boolean tensor, K <= N and K must be known statically.
name: A name for this operation (optional).
Returns:
(N-K+1)-dimensional tensor populated by entries in `tensor` corresponding
to `True` values in `mask`.
Raises:
ValueError: If shapes do not conform.
Examples:
```python
# 2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
boolean_mask(tensor, mask) ==> [[1, 2], [5, 6]]
```
In [ ]:
Content source: iABC2XYZ/abc
Similar notebooks: