In [1]:
import tensorflow as tf
help(tf.concat)
Help on function concat in module tensorflow.python.ops.array_ops:
concat(values, axis, name='concat')
Concatenates tensors along one dimension.
Concatenates the list of tensors `values` along dimension `axis`. If
`values[i].shape = [D0, D1, ... Daxis(i), ...Dn]`, the concatenated
result has shape
[D0, D1, ... Raxis, ...Dn]
where
Raxis = sum(Daxis(i))
That is, the data from the input tensors is joined along the `axis`
dimension.
The number of dimensions of the input tensors must match, and all dimensions
except `axis` must be equal.
For example:
```python
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
# tensor t3 with shape [2, 3]
# tensor t4 with shape [2, 3]
tf.shape(tf.concat([t3, t4], 0)) ==> [4, 3]
tf.shape(tf.concat([t3, t4], 1)) ==> [2, 6]
```
Note: If you are concatenating along a new axis consider using stack.
E.g.
```python
tf.concat([tf.expand_dims(t, axis) for t in tensors], axis)
```
can be rewritten as
```python
tf.stack(tensors, axis=axis)
```
Args:
values: A list of `Tensor` objects or a single `Tensor`.
axis: 0-D `int32` `Tensor`. Dimension along which to concatenate.
name: A name for the operation (optional).
Returns:
A `Tensor` resulting from concatenation of the input tensors.
In [ ]:
Content source: iABC2XYZ/abc
Similar notebooks: