INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_save_checkpoints_secs': 600, '_num_ps_replicas': 0, '_keep_checkpoint_max': 5, '_task_type': None, '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f6052530290>, '_model_dir': 'Models/model_2', '_save_checkpoints_steps': None, '_keep_checkpoint_every_n_hours': 10000, '_session_config': None, '_tf_random_seed': None, '_save_summary_steps': 100, '_environment': 'local', '_num_worker_replicas': 0, '_task_id': 0, '_log_step_count_steps': 100, '_tf_config': gpu_options {
per_process_gpu_memory_fraction: 1.0
}
, '_evaluation_master': '', '_master': ''}
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-5-9c7783935d45> in <module>()
11
12 # 拟合数据。
---> 13 regressor.fit(train_X, train_y, batch_size=BATCH_SIZE, steps=TRAINING_STEPS)
14
15 # 计算预测值。
/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.pyc in fit(self, x, y, batch_size, steps, max_steps, monitors)
1351 steps=steps,
1352 max_steps=max_steps,
-> 1353 monitors=all_monitors)
1354 return self
1355
/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/deprecation.pyc in new_func(*args, **kwargs)
294 'in a future version' if date is None else ('after %s' % date),
295 instructions)
--> 296 return func(*args, **kwargs)
297 return tf_decorator.make_decorator(func, new_func, 'deprecated',
298 _add_deprecated_arg_notice_to_docstring(
/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.pyc in fit(self, x, y, input_fn, steps, batch_size, monitors, max_steps)
456 hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps))
457
--> 458 loss = self._train_model(input_fn=input_fn, hooks=hooks)
459 logging.info('Loss for final step: %s.', loss)
460 return self
/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.pyc in _train_model(self, input_fn, hooks)
956 features, labels = input_fn()
957 self._check_inputs(features, labels)
--> 958 model_fn_ops = self._get_train_ops(features, labels)
959 ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss)
960 all_hooks.extend(hooks)
/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.pyc in _get_train_ops(self, features, labels)
1163 `ModelFnOps` object.
1164 """
-> 1165 return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN)
1166
1167 def _get_eval_ops(self, features, labels, metrics):
/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.pyc in _call_model_fn(self, features, labels, mode)
1134 if 'model_dir' in model_fn_args:
1135 kwargs['model_dir'] = self.model_dir
-> 1136 model_fn_results = self._model_fn(features, labels, **kwargs)
1137
1138 if isinstance(model_fn_results, model_fn_lib.ModelFnOps):
<ipython-input-4-1327d8cf63b8> in lstm_model(X, y)
2 lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE)
3 cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * NUM_LAYERS)
----> 4 x_ = tf.unpack(X, axis=1)
5
6 output, _ = tf.nn.rnn(cell, x_, dtype=tf.float32)
AttributeError: 'module' object has no attribute 'unpack'