In [1]:
# import required libraries to munge data
import pandas as pd
import numpy as np

In [2]:
# import matplotlib to draw plot inside of notebook
%matplotlib inline
from mpl_toolkits.mplot3d.axes3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm

In [3]:
%matplotlib inline
import acc_mgr as acc

In [ ]:
observed_iterations = [6400, 12800, 199680]    
observed_test_data = [256, 512, 2048, 8092]

for i in observed_iterations:
    for j in observed_test_data:
        fig = acc.plot_by_fc(i, j, to_log_scale=False)
        fig2 = acc.plot_by_fc(i, j, to_log_scale=True)
        file_name = 'acc_trend_' + str(i) + '_' + str(j)
        fig.savefig(file_name + '.svg', format='svg', dpi=900)
        file_name = 'acc_trend_' + str(i) + '_' + str(j) + "_log_scale"
        fig2.savefig(file_name + '.svg', format='svg', dpi=900)

In [ ]:
observed_iterations = [6400, 12800, 199680]
for i in observed_iterations:
    acc.plot_by_fc(i, 512, to_log_scale=False)

In [5]:
tables = acc.get_acc()
print len(tables)
tables.describe()


744
Out[5]:
Iteration L1 L2 L3 Testing Accuracy(256) Testing Accuracy(512) Testing Accuracy(2048) Testing Accuracy(8092)
count 744.000000 744.000000 744.000000 744.000000 744.000000 744.000000 744.000000 744.000000
mean 72960.000000 36.741935 113.322581 480.000000 0.553514 0.543708 0.531833 0.548819
std 89702.961031 42.688998 162.454899 343.392622 0.299698 0.291934 0.286335 0.294267
min 6400.000000 2.000000 2.000000 128.000000 0.058594 0.076170 0.083010 0.086510
25% 6400.000000 4.000000 8.000000 224.000000 0.249024 0.248050 0.239865 0.243557
50% 12800.000000 16.000000 32.000000 384.000000 0.589844 0.578120 0.563235 0.590335
75% 199680.000000 64.000000 128.000000 640.000000 0.835938 0.822758 0.800412 0.830573
max 199680.000000 128.000000 512.000000 1024.000000 0.996094 0.980470 0.967290 0.972810

In [ ]:


In [ ]:
print """
Findings:
  -  
"""