In [3]:
%pylab inline
In [5]:
import json
import pylab as P
trn_logs = []
vld_logs = []
with open("exp0/train.log") as fh:
for l in fh:
data = json.loads(l)
if data['split'] == "TRN":
trn_logs.append(data)
else:
vld_logs.append(data)
trn_step_loss = [(d["step"], d["loss"]) for d in trn_logs]
# vld_step_loss = [(d["step"], d["loss"]) for d in vld_logs]
trn_step, trn_loss = zip(*trn_step_loss)
# vld_step, vld_loss = zip(*vld_step_loss)
P.figure()
P.plot(trn_step, trn_loss, "bo", alpha=.5, label="trn")
# P.plot(vld_step, vld_loss, "ro", alpha=.5, label="vld")
# P.xlim(1000, 1600)
P.legend()
Out[5]: