In [1]:
import tensorflow as tf
import numpy as np
from matplotlib import animation
import matplotlib.pyplot as plt
from IPython.display import HTML
import seaborn as sns
import pandas as pd
from itertools import combinations_with_replacement
sns.set()
df = pd.read_csv('TempLinkoping2016.csv')
df.head()
Out[1]:
In [2]:
X = df.iloc[:, 0:1].values
Y = df.iloc[:, 1:2].values
In [3]:
n_features = X.shape[1]
degree = 15
combs = [combinations_with_replacement(range(n_features), i) for i in range(0, degree + 1)]
flat_combs = [item for sublist in combs for item in sublist]
X_new = np.empty((X.shape[0], len(flat_combs)))
for i, index_combs in enumerate(flat_combs):
X_new[:, i] = np.prod(X[:, index_combs], axis=1)
In [4]:
class Polynomial:
def __init__(self, learning_rate):
self.X = tf.placeholder(tf.float32, (None, X_new.shape[1]))
self.Y = tf.placeholder(tf.float32, (None, 1))
w = tf.Variable(tf.random_normal([X_new.shape[1], 1]))
b = tf.Variable(tf.random_normal([1]))
self.logits = tf.matmul(self.X, w) + b
self.cost = tf.reduce_mean(tf.square(self.Y - self.logits))
self.optimizer = tf.train.AdamOptimizer(learning_rate).minimize(self.cost)
In [5]:
tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Polynomial(3)
sess.run(tf.global_variables_initializer())
for i in range(1000):
cost, _ = sess.run([model.cost, model.optimizer], feed_dict={model.X:X_new, model.Y:Y})
if (i+1) % 100 == 0:
print('epoch %d, MSE: %f'%(i+1, cost))
In [6]:
y_output = sess.run(model.logits, feed_dict={model.X:X_new})
plt.scatter(X[:,0],Y[:,0])
plt.plot(X,y_output, c='red')
plt.show()
In [9]:
tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Polynomial(3)
sess.run(tf.global_variables_initializer())
fig = plt.figure(figsize=(10,5))
ax = plt.axes()
ax.scatter(X[:,0],Y[:,0], c='b')
cost, y_output = sess.run([model.cost, model.logits], feed_dict={model.X:X_new, model.Y:Y})
ax.set_xlabel('epoch: %d, MSE: %f'%(0,cost))
line, = ax.plot(X,y_output, lw=2, c='r')
def gradient_mean_square(epoch):
cost, y_output, _ = sess.run([model.cost, model.logits, model.optimizer], feed_dict={model.X:X_new, model.Y:Y})
line.set_data(X,y_output)
ax.set_xlabel('epoch: %d, MSE: %f'%(epoch,cost))
return line, ax
anim = animation.FuncAnimation(fig, gradient_mean_square, frames=100, interval=200)
anim.save('animation-polynomial-regression.gif', writer='imagemagick', fps=10)
In [ ]: