Project Euler: Problem 9

https://projecteuler.net/problem=9

A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,

$$a^2 + b^2 = c^2$$

For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.

There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product abc.


In [2]:
def Euler_9(n):
    for i in range(1,n,1):
        for j in range(1,n-i,1):
            k = n-i-j
            if i**2+j**2==k**2:
                return i*j*k
    return 0

In [3]:
def Euler_9(n):
    for i in range(1,n,1):
        for j in range(1,n-i,1):
            k = n-i-j
            if i**2+j**2==k**2:
                return i*j*k
    return 0
x = Euler_9(1000)
print(x)

"""Answer prints itself below"""


31875000

In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.