https://projecteuler.net/problem=9
A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,
$$a^2 + b^2 = c^2$$For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.
There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product abc.
In [2]:
def Euler_9(n):
for i in range(1,n,1):
for j in range(1,n-i,1):
k = n-i-j
if i**2+j**2==k**2:
return i*j*k
return 0
In [3]:
def Euler_9(n):
for i in range(1,n,1):
for j in range(1,n-i,1):
k = n-i-j
if i**2+j**2==k**2:
return i*j*k
return 0
x = Euler_9(1000)
print(x)
"""Answer prints itself below"""
In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.