In [9]:
from __future__ import division, print_function, absolute_import

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)


Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz

In [10]:
# Parameters
learning_rate = 0.01
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10

# Network Parameters
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
n_input = 784 # MNIST data input (img shape: 28*28)

# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])

weights = {
    'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
    'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
    'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'decoder_b2': tf.Variable(tf.random_normal([n_input])),
}

In [11]:
# Building the encoder
def encoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                   biases['encoder_b1']))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                   biases['encoder_b2']))
    return layer_2


# Building the decoder
def decoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                   biases['decoder_b1']))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                   biases['decoder_b2']))
    return layer_2

# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)

# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X

# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)

# Initializing the variables
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()

In [12]:
# Launch the graph
# Using InteractiveSession (more convenient while using Notebooks)
sess = tf.InteractiveSession()
sess.run(init)

total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
    # Loop over all batches
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        # Run optimization op (backprop) and cost op (to get loss value)
        _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
    # Display logs per epoch step
    if epoch % display_step == 0:
        print("Epoch:", '%04d' % (epoch+1),
              "cost=", "{:.9f}".format(c))

print("Optimization Finished!")

# Applying encode and decode over test set
encode_decode = sess.run(
    y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
# Compare original images with their reconstructions
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
    a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
    a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
f.show()
plt.show()
#plt.draw()
#plt.waitforbuttonpress()


Epoch: 0001 cost= 0.211254120
Epoch: 0002 cost= 0.165353194
Epoch: 0003 cost= 0.150899887
Epoch: 0004 cost= 0.141119137
Epoch: 0005 cost= 0.134108305
Epoch: 0006 cost= 0.129240945
Epoch: 0007 cost= 0.125612423
Epoch: 0008 cost= 0.118528642
Epoch: 0009 cost= 0.115799613
Epoch: 0010 cost= 0.112527654
Epoch: 0011 cost= 0.108782127
Epoch: 0012 cost= 0.106538892
Epoch: 0013 cost= 0.109722957
Epoch: 0014 cost= 0.105236650
Epoch: 0015 cost= 0.105159856
Epoch: 0016 cost= 0.102146447
Epoch: 0017 cost= 0.098682679
Epoch: 0018 cost= 0.099303946
Epoch: 0019 cost= 0.098645188
Epoch: 0020 cost= 0.095862940
Optimization Finished!

In [ ]: