In [45]:
import plotly
plotly.tools.set_config_file(world_readable=True,
sharing='public')
In [46]:
import plotly.plotly as py
In [47]:
from plotly.graph_objs import *
In [48]:
import pandas as pd
In [49]:
df = pd.read_csv('/Users/qiqi/DV590/Part2-Q3-data.csv')
In [50]:
df.head()
Out[50]:
In [97]:
scl = [[0.0, 'rgb(202,200,207)'],[0.2, 'rgb(178,178,195)'],[0.4, 'rgb(148,149,180)'],
[0.6, 'rgb(118,114,160)'],[0.8, 'rgb(77,67,137)'],[1.0, 'rgb(44,9,103)']]
In [98]:
data = [ dict(
type='choropleth',
colorscale = scl,
autocolorscale = False,
locations = df['locations'],
z = [156750,40063,227358,90319,1766693,220454,210170,53247,83586,700267,388342,58573,47176,586442,245197,123353,104884,143875,199683,46277,263809,345059,395166,243933,81678,224091,30637,73455,118785,57282,443148,74403,1023433,357168,24622,467392,125243,147535,506505,45663,143585,31380,227505,990054,94475,23539,359273,296403,53453,226325,27454],
locationmode = 'USA-states',
text = ["State: AL<br>Total Awarded Amount: 5743215<br>GDP(million): 156750",
"State: AK<br>Total Awarded Amount: 16189749<br>GDP(million): 40063",
"State: AZ<br>Total Awarded Amount: 19037687<br>GDP(million): 227358",
"State: AR<br>Total Awarded Amount: 1965330<br>GDP(million): 90319",
"State: CA<br>Total Awarded Amount: 74663752<br>GDP(million): 1766693",
"State: CO<br>Total Awarded Amount: 22235728<br>GDP(million): 220454",
"State: CT<br>Total Awarded Amount: 16501999<br>GDP(million): 210170",
"State: DE<br>Total Awarded Amount: 3857523<br>GDP(million): 53247",
"State: DC<br>Total Awarded Amount: 25424106<br>GDP(million): 83586",
"State: FL<br>Total Awarded Amount: 26600593<br>GDP(million): 700267",
"State: GA<br>Total Awarded Amount: 11216327<br>GDP(million): 388342",
"State: HI<br>Total Awarded Amount: 14427899<br>GDP(million): 58573",
"State: ID<br>Total Awarded Amount: 1961349<br>GDP(million): 47176",
"State: IL<br>Total Awarded Amount: 68112505<br>GDP(million): 586442",
"State: IN<br>Total Awarded Amount: 16377153<br>GDP(million): 245197",
"State: IA<br>Total Awarded Amount: 8493716<br>GDP(million): 123353",
"State: KS<br>Total Awarded Amount: 5764416<br>GDP(million): 104884",
"State: KY<br>Total Awarded Amount: 8022942<br>GDP(million): 143875",
"State: LA<br>Total Awarded Amount: 7978539<br>GDP(million): 199683",
"State: ME<br>Total Awarded Amount: 11177079<br>GDP(million): 46277",
"State: MD<br>Total Awarded Amount: 21671260<br>GDP(million): 263809",
"State: MA<br>Total Awarded Amount: 45976945<br>GDP(million): 345059",
"State: MI<br>Total Awarded Amount: 28799226<br>GDP(million): 395166",
"State: MN<br>Total Awarded Amount: 15325162<br>GDP(million): 243933",
"State: MS<br>Total Awarded Amount: 2787779<br>GDP(million): 81678",
"State: MO<br>Total Awarded Amount: 14911587<br>GDP(million): 224091",
"State: MT<br>Total Awarded Amount: 10424194<br>GDP(million): 30637",
"State: NE<br>Total Awarded Amount: 6600356<br>GDP(million): 73455",
"State: NV<br>Total Awarded Amount: 3677624<br>GDP(million): 118785",
"State: NH<br>Total Awarded Amount: 4797223<br>GDP(million): 57282",
"State: NJ<br>Total Awarded Amount: 11475362<br>GDP(million): 443148",
"State: NM<br>Total Awarded Amount: 10640574<br>GDP(million): 74403",
"State: NY<br>Total Awarded Amount: 105860170<br>GDP(million): 1023433",
"State: NC<br>Total Awarded Amount: 29992038<br>GDP(million): 357168",
"State: ND<br>Total Awarded Amount: 3071608<br>GDP(million): 24622",
"State: OH<br>Total Awarded Amount: 22015009<br>GDP(million): 467392",
"State: OK<br>Total Awarded Amount: 12405823<br>GDP(million): 125243",
"State: OR<br>Total Awarded Amount: 9556529<br>GDP(million): 147535",
"State: PA<br>Total Awarded Amount: 59575053<br>GDP(million): 506505",
"State: RI<br>Total Awarded Amount: 4751919<br>GDP(million): 45663",
"State: SC<br>Total Awarded Amount: 9063478<br>GDP(million): 143585",
"State: SD<br>Total Awarded Amount: 3596551<br>GDP(million): 31380",
"State: TN<br>Total Awarded Amount: 18083590<br>GDP(million): 227505",
"State: TX<br>Total Awarded Amount: 48252344<br>GDP(million): 990054",
"State: UT<br>Total Awarded Amount: 6884351<br>GDP(million): 94475",
"State: VT<br>Total Awarded Amount: 6381133<br>GDP(million): 23539",
"State: VA<br>Total Awarded Amount: 18068081<br>GDP(million): 359273",
"State: WA<br>Total Awarded Amount: 23476750<br>GDP(million): 296403",
"State: WV<br>Total Awarded Amount: 927680<br>GDP(million): 53453",
"State: WI<br>Total Awarded Amount: 17075827<br>GDP(million): 226325",
"State: WY<br>Total Awarded Amount: 2210361<br>GDP(million): 27454"],
marker = dict(
line = dict (
color = 'rgb(255,255,255)',
width = 2
) ),
colorbar = dict(
title = "GDP(million)")
) ]
In [99]:
#layout = dict(
#title = '2005 US GDP Distribution<br>(Compared with total awarded amount)',
#geo = dict(
#scope='',
#projection=dict( type='albers usa' ),
#showlakes = True,
#lakecolor = 'rgb(255, 255, 255)'),
#)
layout = dict(
title = '2005 US GDP Distribution<br>(Compared with total awarded amount)',
geo = dict(
scope = 'north america',
showland = True,
landcolor = "rgb(212, 212, 212)",
subunitcolor = "rgb(255, 255, 255)",
countrycolor = "rgb(255, 255, 255)",
showlakes = True,
lakecolor = "rgb(255, 255, 255)",
showsubunits = True,
showcountries = True,
resolution = 50,
projection = dict(
type = 'conic conformal',
rotation = dict(
lon = -100
)
),
lonaxis = dict(
showgrid = True,
gridwidth = 0.5,
range= [ -140.0, -55.0 ],
dtick = 5
),
lataxis = dict (
showgrid = True,
gridwidth = 0.5,
range= [ 20.0, 60.0 ],
dtick = 5
)
)
)
In [100]:
fig = dict( data=data, layout=layout )
In [102]:
py.iplot(fig)
Out[102]:
In [ ]: