In [19]:
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
In [2]:
obj = Series([4, 7, -5, 3])
In [3]:
obj
Out[3]:
In [4]:
obj.values
Out[4]:
In [5]:
obj.index
Out[5]:
In [6]:
obj2 = Series([4, 7, -5, 3], index=["d", "b", "a", "c"])
In [7]:
obj2
Out[7]:
In [8]:
obj2.index
Out[8]:
In [9]:
obj2["a"]
Out[9]:
In [10]:
obj[2]
Out[10]:
In [11]:
obj2["d"] = 6
In [12]:
obj2
Out[12]:
In [14]:
obj2[["c", "a", "d"]]
Out[14]:
In [15]:
obj2
Out[15]:
In [16]:
obj2[obj2 > 0]
Out[16]:
In [17]:
obj2 * 2
Out[17]:
In [20]:
np.exp(obj2)
Out[20]:
In [21]:
"b" in obj2
Out[21]:
In [22]:
"e" in obj2
Out[22]:
In [23]:
sdata = {"Ohio": 35000, "Texas": 71000, "Oregon": 16000, "Utah": 5000}
In [24]:
obj3 = Series(sdata)
In [25]:
obj3
Out[25]:
In [26]:
states = ["California", "Ohio", "Oregon", "Texas"]
In [27]:
obj4 = Series(sdata, index=states)
In [28]:
obj4
Out[28]:
In [29]:
pd.isnull(obj4)
Out[29]:
In [30]:
pd.notnull(obj4)
Out[30]:
In [31]:
obj4.isnull()
Out[31]:
In [32]:
obj3
Out[32]:
In [33]:
obj4
Out[33]:
In [37]:
obj3 + obj4
Out[37]:
In [40]:
obj4.name = "population"
In [41]:
obj4.index.name = "state"
In [42]:
obj4
Out[42]:
In [43]:
obj.index = ["Bob", "Steve", "Jeff", "Ryan"]
In [44]:
obj
Out[44]:
In [45]:
data = {"state": ["Ohio", "Ohio", "Ohio", "Nevada", "Nevada"],
"year": [2000, 2001, 2002, 2001, 2002],
"pop": [1.5, 1.7, 3.6, 2.4, 2.9]}
frame = DataFrame(data)
In [46]:
frame
Out[46]:
In [47]:
DataFrame(data, columns=["year", "state", "pop"])
Out[47]:
In [48]:
frame2 = DataFrame(data, columns=["year", "state", "pop", "debt"],
index=["one", "two", "three", "four", "five"])
In [49]:
frame2
Out[49]:
In [50]:
frame2.columns
Out[50]:
In [51]:
frame2["state"]
Out[51]:
In [53]:
frame2.year
Out[53]:
In [54]:
frame2.ix["three"]
Out[54]:
In [56]:
frame2["debt"] = 16.5
In [57]:
frame2
Out[57]:
In [58]:
frame2.debt = np.arange(5.)
In [59]:
frame2
Out[59]:
In [60]:
val = Series([-1.2, -1.5, -1.7], index=["two", "four", "five"])
In [66]:
frame2["debt"] = val
In [67]:
frame2
Out[67]:
In [68]:
frame2["eastern"] = frame2.state == "Ohio"
In [69]:
frame2
Out[69]:
In [70]:
del frame2["eastern"]
In [71]:
frame2.columns
Out[71]:
In [72]:
pop = {"Nevada": {2001: 2.4, 2002: 2.9},
"Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6}}
In [73]:
frame3 = DataFrame(pop)
In [75]:
frame3
Out[75]:
In [78]:
frame3.T
Out[78]:
In [79]:
DataFrame(pop, index=[2001, 2002, 2003])
Out[79]:
In [80]:
pdata = {"Ohio": frame3["Ohio"][:-1],
"Nevada": frame3["Nevada"][:2]}
In [82]:
DataFrame(pdata)
Out[82]:
In [83]:
frame3.index.name = "year"
frame3.columns.name = "state"
In [84]:
frame3
Out[84]:
In [85]:
frame3.values
Out[85]:
In [86]:
frame2.values
Out[86]:
In [87]:
obj = Series(range(3), index=["a", "b", "c"])
In [88]:
index = obj.index
In [89]:
index
Out[89]:
In [90]:
index[1:]
Out[90]:
In [91]:
index[1] = "d"
In [92]:
index = pd.Index(np.arange(3))
In [93]:
index
Out[93]:
In [94]:
obj2 = Series([1.5, -2.5, 0], index=index)
In [95]:
obj2
Out[95]:
In [96]:
obj2.index is index
Out[96]:
In [97]:
frame3
Out[97]:
In [98]:
"Ohio" in frame3.columns
Out[98]:
In [99]:
2003 in frame3.index
Out[99]:
In [107]:
obj = Series([4.5, 7.2, -5.3, 3.6], index=["d", "b", "a", "c"])
In [108]:
obj
Out[108]:
In [109]:
obj2 = obj.reindex(["a", "b", "c", "d", "e"])
In [110]:
obj2
Out[110]:
In [111]:
obj.reindex(["a", "b", "c", "d", "e"], fill_value=0)
Out[111]:
In [112]:
obj3 = Series(["blue", "purple", "yellow"], index=[0, 2, 4])
In [113]:
obj3.reindex(range(6), method="ffill")
Out[113]:
In [114]:
frame = DataFrame(np.arange(9).reshape((3, 3)), index=["a", "c", "d"], columns=["Ohio", "Texas", "California"])
In [115]:
frame
Out[115]:
In [116]:
frame2 = frame.reindex(["a", "b", "c", "d"])
In [117]:
frame2
Out[117]:
In [118]:
states = ["Texas", "Utah", "California"]
In [119]:
frame.reindex(columns=states)
Out[119]:
In [120]:
frame.reindex(index=["a", "b", "c", "d"], method="ffill", columns=states)
Out[120]:
In [121]:
frame.ix[["a", "b", "c", "d"], states]
Out[121]:
In [ ]: