In [1]:
import tensorflow as tf
import os
In [7]:
filename_queue = tf.train.string_input_producer(tf.train.match_filenames_once("./train/*.jpg"))
#filename_queue = tf.train.string_input_producer(os.listdir('./train/'))
In [8]:
image_reader = tf.WholeFileReader()
In [9]:
_, image_file = image_reader.read(filename_queue)
In [10]:
image = tf.image.decode_jpeg(image_file)
In [11]:
with tf.Session() as sess:
# Required to get the filename matching to run.
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# Get an image tensor and print its value.
for i in range(5):
image_tensor = sess.run([image])
print(image_tensor)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
上述代码读取单个文件是成功的,但是读取多个文件会出现错误。
In [12]:
import os
files = os.listdir('./train/')
for file in files:
print(file)
将图片转化为TFRecord文件
In [16]:
import os
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
In [ ]:
cwd='D:\Python\data\dog\\'
classes={'husky','chihuahua'} #人为 设定 2 类
writer= tf.python_io.TFRecordWriter("dog_train.tfrecords") #要生成的文件