In [ ]:
from collections import OrderedDict
import numpy as np
import pandas as pd
from bokeh._legacy_charts import Step, output_notebook, show
output_notebook()
In [ ]:
# create some example data
xyvalues = OrderedDict(
python=[2, 3, 7, 5, 26, 81, 44, 93, 94, 105, 66, 67, 90, 83],
pypy=[12, 20, 47, 15, 126, 121, 144, 333, 354, 225, 276, 287, 270, 230],
jython=[22, 43, 70, 75, 76, 101, 114, 123, 194, 215, 201, 227, 139, 160],
)
In [ ]:
step = Step(
xyvalues, title="Step Chart, dict input",
legend='top_left', ylabel='Performance')
show(step)
In [ ]:
df = pd.DataFrame(xyvalues)
step = Step(
df, title="Step Chart, pandas input",legend='top_left',
ylabel='Performance')
show(step)
In [ ]:
step = Step(
list(xyvalues.values()), title="Step Chart, list input",
legend='top_left', ylabel='Performance')
show(step)
In [ ]:
# read in some stock data from the Yahoo Finance API
AAPL = pd.read_csv(
"http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010",
parse_dates=['Date'])
MSFT = pd.read_csv(
"http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010",
parse_dates=['Date'])
IBM = pd.read_csv(
"http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010",
parse_dates=['Date'])
sxyvalues = OrderedDict(
AAPL=AAPL['Adj Close'],
MSFT=MSFT['Adj Close'],
IBM=IBM['Adj Close'],
)
In [ ]:
step = Step(
sxyvalues, title="Stock Prices",
legend='top_left', ylabel='Price')
show(step)
In [ ]:
from blaze import Data
b = Data(df)
step = Step(b, title="Step Chart (blaze)", legend='top_left', ylabel='Performance')
show(step)
In [ ]: