In [1]:
import neurosynth as ns
import glob, os
In [2]:
# load ROIsBzdok_DMN
atlas_nii = sorted(glob.glob('Bzdok_DMN/*.nii.gz'))
atlas_names = [roi.split(os.sep)[-1].split('.nii.gz')[0] for roi in atlas_nii]
In [3]:
# load neurosynth dataset
dataset = ns.Dataset.load('data/dataset.pkl')
In [4]:
ids = dataset.get_studies(mask='./Bzdok_DMN/%s.nii.gz'%atlas_names[0], activation_threshold=0.1)
ma = ns.meta.MetaAnalysis(dataset, ids, q=0.01, prior=0.5)
In [7]:
ma.images.keys()
Out[7]:
In [12]:
# Seed-based coactivation meta-analysis
for a in atlas_names:
ids = dataset.get_studies(mask='./Bzdok_DMN/%s.nii.gz'%a, activation_threshold=0.1)
ma = ns.meta.MetaAnalysis(dataset, ids, q=0.01, prior=0.5)
ma.save_results(image_list=['specificity_z'], output_dir='./Neurosynth_meta/', prefix=a)