In [ ]:
'''
http://cs231n.github.io/neural-networks-case-study/
'''
In [1]:
import numpy as np
In [5]:
import matplotlib.pyplot as plt
In [6]:
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
# lets visualize the data:
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()
In [19]:
# Train a softmax linear classifier
W = 0.01 * np.random.randn(D, K)
b = np.zeros((1, K))
In [20]:
print(W.shape)
In [22]:
print(W);print(b)
In [26]:
scores = np.dot(X, W) + b
In [28]:
print(scores[1,:])
In [29]:
num_examples = X.shape[0]
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis = 1, keepdims = True)
In [31]:
a = np.sum(exp_scores, axis = 1, keepdims = True)
In [34]:
print(a.shape); print(exp_scores.shape); print(probs.shape)
In [37]:
correct_logprobs = -np.log(probs[range(num_examples), y])
In [38]:
print(correct_logprobs.shape)
In [39]:
data_loss = np.sum(correct_logprobs) / num_examples
In [40]:
print(data_loss)
In [42]:
reg = 0.01
In [43]:
reg_loss = 0.5 * reg * np.sum(W * W)
In [44]:
loss = data_loss + reg_loss
In [46]:
print(loss); print(reg_loss)
In [47]:
dscores = probs
In [48]:
dscores[range(num_examples), y] -= 1
In [49]:
print(dscores.shape)
In [50]:
dscores /= num_examples
In [51]:
dW = np.dot(X.T, dscores)
In [52]:
print(dW)
In [53]:
db = np.sum(dscores, axis = 0, keepdims = True)
In [54]:
print(db.shape)
In [55]:
print(db)
In [56]:
dW += reg * W
In [57]:
print(dW.shape)
In [61]:
# Train a linear classifier
W = 0.01 * np.random.randn(D, K)
b = np.zeros((1, K))
step_size = 1e-0
reg = 1e-3
num_examples = X.shape[0]
for i in range(301):
# scores: N * K
scores = np.dot(X, W) + b
exp_scores = np.exp(scores)
# probs: N *K
probs = exp_scores / np.sum(exp_scores, axis = 1, keepdims = True)
correct_logprobs = -np.log(probs[range(num_examples), y])
data_loss = np.sum(correct_logprobs) / num_examples
reg_loss = 0.5 * reg * np.sum(W * W)
loss = data_loss + reg_loss
if i % 50 == 0:
print("Iteration %d: loss %f" % (i, loss))
dscores = probs
dscores[range(num_examples), y] -= 1
dscores /= num_examples
dW = np.dot(X.T, dscores)
db = np.sum(dscores, axis = 0, keepdims = True)
dW += reg * W
W += -step_size * dW
b += - step_size * db
In [62]:
scores = np.dot(X, W) + b
predicted_class = np.argmax(scores, axis = 1)
print('training accuracy: %.2f' % (np.mean(predicted_class == y)))
In [64]:
# plot the resulting classifier
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
In [66]:
print(xx.shape); print(yy.shape)
In [68]:
Z = np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b
In [74]:
Z = np.argmax(Z, axis = 1)
In [76]:
print(Z.shape);print(Z)
In [78]:
Z = Z.reshape(xx.shape)
In [79]:
print(Z.shape)
In [80]:
fig = plt.figure()
In [81]:
plt.contourf(xx, yy, Z, cmap = plt.cm.Spectral, alpha=0.8)
Out[81]:
In [82]:
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
Out[82]:
In [83]:
plt.xlim(xx.min(), xx.max())
Out[83]:
In [84]:
plt.ylim(yy.min(), yy.max())
Out[84]:
In [85]:
fig
Out[85]:
In [86]:
# initialize parameters randomly
h = 100 # size of hidden layer
W = 0.01 * np.random.randn(D, h)
b = np.zeros((1, h))
W2 = 0.01 * np.random.randn(h, K)
b2 = np.zeros((1, K))
In [87]:
hidden_layer = np.dot(X, W) + b
In [88]:
hidden_layer = np.maximum(0, hidden_layer) # ReLU activation
In [90]:
scores = np.dot(hidden_layer, W2) + b2
In [93]:
print(scores.shape); print(hidden_layer.shape)
In [95]:
# initialize parameters randomly
h = 100 # size of hidden layer
W = 0.01 * np.random.randn(D, h)
b = np.zeros((1, h))
W2 = 0.01 * np.random.randn(h, K)
b2 = np.zeros((1, K))
# some hyperparameters
step_size = 1e-0
reg = 1e-3
num_examples = X.shape[0]
for i in range(10000):
hidden_layer = np.dot(X, W) + b
hidden_layer = np.maximum(0, hidden_layer)
scores = np.dot(hidden_layer, W2) + b2
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis = 1, keepdims = True)
correct_logprobs = -np.log(probs[range(num_examples), y])
data_loss = np.sum(correct_logprobs) / num_examples
reg_loss = 0.5 * reg * np.sum(W * W) + 0.5 * reg * np.sum(W2 * W2)
loss = data_loss + reg_loss
if i % 2000 == 0:
print("iteration %d: loss: %f" % (i, loss))
dscores = probs
dscores[range(num_examples), y] -= 1
dscores /= num_examples
# backpropate the gradient to the parameters
# first backprop into paramters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis = 0, keepdims = True)
# into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0
# finally into W, b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis = 0, keepdims = True)
dW2 += reg * W2
dW += reg * W
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2
In [97]:
# evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1)
print('training accuracy: %.2f' % (np.mean(predicted_class == y)))
In [98]:
# plot the resulting classifier
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = np.dot(np.maximum(0, np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b), W2) + b2
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
Out[98]:
In [99]:
fig
Out[99]: