In [1]:
import tensorflow as tf
In [2]:
import numpy as np
In [3]:
my_array = np.array([[1., 3., 5., 7., 9.],
[-2., 0., 2., 4., 6.],
[-6, -3., 0., 3., 6.]])
In [4]:
x_vals = np.array([my_array, my_array + 1])
In [17]:
x_data = tf.placeholder(tf.float64, shape=(3, 5))
In [13]:
m1 = np.array([[1.0], [0.0], [2.0], [4.0], [0.4]])
In [14]:
m2 = np.array([[20.]])
In [20]:
a1 = np.array([[14.]])
In [18]:
prod1 = tf.matmul(x_data, m1)
In [19]:
prod2 = tf.matmul(prod1, m2)
In [21]:
add1 = tf.add(prod2, a1)
In [23]:
with tf.Session() as sess:
for x_val in x_vals:
print(sess.run(add1, feed_dict={x_data: x_val}))
In [ ]: