In [1]:
import tensorflow as tf
In [9]:
import numpy as np
In [3]:
my_var = tf.Variable(tf.zeros([2,3]))
In [5]:
with tf.Session() as sess:
initialize_op = tf.global_variables_initializer()
sess.run(initialize_op)
print(my_var)
In [6]:
x = tf.placeholder(tf.float32, shape=[2,2])
In [7]:
y = tf.identity(x)
In [10]:
x_vals = np.random.rand(2,2)
In [11]:
print(x_vals)
In [12]:
with tf.Session() as sess:
sess.run(y, feed_dict={x:x_vals})
print(y)
In [13]:
first_var = tf.Variable(tf.zeros([2,3]))
In [14]:
with tf.Session() as sess:
sess.run(first_var.initializer)
second_var = tf.Variable(tf.zeros_like(first_var))
sess.run(second_var.initializer)
In [15]:
identity_matrix = tf.diag([1.0, 1.0, 1.0])
In [16]:
A = tf.truncated_normal([2, 3])
In [17]:
print(A)
In [18]:
B = tf.fill([2,3], 5.0)
In [19]:
C = tf.random_uniform([3,2])
In [20]:
D = tf.convert_to_tensor(np.array([[1., 2., 3.], [-3., -7., -1.], [0., 5., -2.]]))
In [23]:
with tf.Session() as sess:
print(sess.run(identity_matrix))
print(sess.run(A))
print(sess.run(B))
print(sess.run(C))
print(sess.run(D))
print(sess.run(C))
In [32]:
with tf.Session() as sess:
print(sess.run(A+B))
print(sess.run(B-B))
print(sess.run(tf.matmul(B, identity_matrix)))
print(sess.run(tf.transpose(C)))
print(sess.run(tf.matrix_determinant(D)))
print(sess.run(tf.matrix_inverse(D)))
In [36]:
with tf.Session() as sess:
print(sess.run(tf.div(3, 4)))
print(sess.run(tf.truediv(3, 4)))
print(sess.run(tf.floordiv(3.0, 4.0)))
print(sess.run(tf.div(3.0, 4.)))
In [39]:
with tf.Session() as sess:
print(sess.run(tf.nn.relu([-3., 3., 10.])))
print(sess.run(tf.nn.relu6([-3., 3, 10.])))
print(sess.run(tf.nn.sigmoid([-3., 3., 10.])))