Test Test Train Train
Accuracy Cross_entropy Accuracy Cross_entropy Batch
-------- ------------- -------- ------------- -----
0.5048 21417 0.503 21495 0
0.4955 6933 0.503 6932 10
0.5063 6934 0.507 6929 20
0.5048 6931 0.506 6932 30
0.5039 6931 0.514 6929 40
0.5048 6931 0.507 6931 50
0.5048 6931 0.499 6932 60
0.5048 6931 0.503 6931 70
0.5048 6931 0.504 6931 80
0.5048 6931 0.498 6932 90
0.5048 6931 0.507 6930 100
0.5048 6931 0.503 6931 110
0.5048 6935 0.521 6924 120
0.5048 6932 0.512 6929 130
0.5048 6931 0.507 6930 140
0.5045 6931 0.501 6931 150
0.5043 6930 0.499 6932 160
0.5049 6931 0.497 6931 170
0.4952 6933 0.510 6929 180
0.4952 6937 0.493 6940 190
0.5156 6924 0.527 6917 200
0.5198 6921 0.537 6908 210
0.5338 6914 0.553 6888 220
0.5279 6919 0.536 6911 230
0.5216 6924 0.526 6900 240
0.5385 6891 0.568 6814 250
0.5298 6920 0.546 6865 260
0.5394 6885 0.553 6855 270
0.5300 6899 0.542 6879 280
0.5530 6836 0.593 6656 290
0.5443 6870 0.549 6843 300
0.5648 6812 0.596 6671 310
0.5615 6813 0.593 6704 320
0.5527 6824 0.575 6761 330
0.5746 6746 0.618 6533 340
0.5616 6818 0.583 6770 350
0.5732 6733 0.617 6496 360
0.5309 6922 0.549 6806 370
0.5852 6643 0.645 6373 380
0.5856 6728 0.611 6621 390
0.6003 6569 0.652 6299 400
0.5990 6657 0.627 6547 410
0.5314 6908 0.546 6888 420
0.5822 6707 0.612 6548 430
0.5524 6840 0.554 6832 440
0.6109 6533 0.660 6232 450
0.5973 6601 0.642 6194 460
0.5510 6815 0.567 6765 470
0.6112 6568 0.630 6453 480
0.6298 6503 0.650 6400 490
0.5724 6730 0.587 6630 500
0.5907 6548 0.612 6357 510
0.5464 6880 0.553 6857 520
0.5623 6678 0.582 6519 530
0.6328 6221 0.681 5753 540
0.5949 6646 0.623 6538 550
0.6000 6528 0.618 6452 560
0.5463 6741 0.552 6641 570
0.6788 5968 0.717 5668 580
0.5965 6714 0.620 6223 590
0.6063 6427 0.627 6230 600
0.5189 7331 0.531 7214 610
0.6987 5658 0.757 5185 620
0.5705 6903 0.577 6683 630
0.5949 6738 0.589 6693 640
0.6949 5760 0.716 5516 650
0.5882 6502 0.589 6457 660
0.7198 5386 0.764 5038 670
0.7224 5221 0.792 4640 680
0.6465 6015 0.672 5642 690
0.6843 6269 0.687 6191 700
0.7295 5194 0.773 4791 710
0.6848 6022 0.689 5948 720
0.7440 5008 0.786 4550 730
0.6565 6096 0.684 5834 740
0.7464 4980 0.794 4556 750
0.7051 5268 0.742 4907 760
0.5463 6829 0.546 6819 770
0.5282 6705 0.528 6725 780
0.5572 6784 0.574 6705 790
0.7275 5343 0.735 5291 800
0.6783 6288 0.687 6202 810
0.7170 5620 0.717 5502 820
0.7649 4894 0.770 4770 830
0.6485 6348 0.649 6234 840
0.7333 5287 0.739 5185 850
0.7855 4372 0.817 3967 860
0.5960 6622 0.602 6531 870
0.7828 4506 0.789 4348 880
0.7926 4153 0.832 3691 890
0.7865 4373 0.813 4058 900
0.7884 4326 0.813 4019 910
0.7931 4125 0.826 3715 920
0.8062 3911 0.822 3706 930
0.7029 5238 0.694 5347 940
0.7760 4224 0.793 3969 950
0.8143 3887 0.808 3899 960
0.6905 5722 0.683 5779 970
0.6390 6475 0.615 6478 980
0.7744 5207 0.770 5209 990
0.8268 3551 0.846 3267 1000
0.7147 5020 0.699 5284 1010
0.8322 3667 0.830 3645 1020
0.7086 4935 0.700 5181 1030
0.8139 3696 0.822 3573 1040
0.8304 3494 0.843 3328 1050
0.7643 4312 0.790 3981 1060
0.8318 3531 0.822 3634 1070
0.7097 4992 0.708 5114 1080
0.7611 4979 0.766 4874 1090
0.8365 3349 0.852 3135 1100
0.6645 5501 0.658 5484 1110
0.8237 3520 0.837 3461 1120
0.6636 5645 0.666 5730 1130
0.8351 3350 0.848 3170 1140
0.8315 3670 0.820 3693 1150
0.7239 4811 0.728 4825 1160
0.8457 3170 0.863 2936 1170
0.8309 3844 0.835 3832 1180
0.7674 4299 0.748 4536 1190
0.8400 3135 0.839 3188 1200
0.8082 3632 0.800 3743 1210
0.8452 3166 0.845 3268 1220
0.8064 3627 0.806 3659 1230
0.8336 3278 0.831 3368 1240
0.8102 3560 0.804 3657 1250
0.8561 2989 0.853 2985 1260
0.8112 3551 0.815 3506 1270
0.8154 3506 0.810 3599 1280
0.8147 3533 0.812 3540 1290
0.8130 3575 0.808 3676 1300
0.8261 3279 0.832 3263 1310
0.8294 3280 0.838 3330 1320
0.8289 3255 0.829 3319 1330
0.8399 3160 0.840 3247 1340
0.8394 3229 0.832 3362 1350
0.8350 3083 0.843 3108 1360
0.8352 3143 0.836 3200 1370
0.8485 2951 0.846 3031 1380
0.8300 3228 0.827 3321 1390
0.8281 3281 0.830 3278 1400
0.8398 3030 0.840 3123 1410
0.8366 3131 0.836 3214 1420
0.8367 3177 0.826 3253 1430
0.8252 3273 0.821 3376 1440
0.8262 3283 0.829 3312 1450
0.8524 2879 0.847 3005 1460
0.8556 2761 0.854 2842 1470
0.8434 3024 0.837 3166 1480
0.8344 3086 0.833 3181 1490
0.8539 2752 0.863 2727 1500
0.8495 2885 0.846 2975 1510
0.8600 2669 0.853 2841 1520
0.8430 3026 0.835 3116 1530
0.8474 2928 0.846 2999 1540
0.8542 2856 0.851 2893 1550
0.8157 3408 0.804 3628 1560
0.8484 2886 0.842 3005 1570
0.8459 2901 0.842 2977 1580
0.8565 2740 0.855 2843 1590
0.8507 2849 0.845 3021 1600
0.8674 2584 0.871 2549 1610
0.8485 2841 0.849 2894 1620
0.8431 2941 0.832 3161 1630
0.8506 2857 0.851 2934 1640
0.8656 2557 0.862 2703 1650
0.8500 2874 0.850 2928 1660
0.8631 2622 0.860 2707 1670
0.8374 3063 0.833 3170 1680
0.8604 2733 0.853 2830 1690
0.8677 2548 0.866 2614 1700
0.8484 2943 0.842 3071 1710
0.8519 2797 0.850 2935 1720
0.8381 2991 0.836 3081 1730
0.8731 2440 0.871 2588 1740
0.8685 2520 0.867 2586 1750
0.8609 2555 0.864 2696 1760
0.8706 2462 0.871 2498 1770
0.8543 2698 0.859 2745 1780
0.8669 2525 0.860 2708 1790
0.8623 2682 0.854 2874 1800
0.8717 2464 0.868 2590 1810
0.8671 2502 0.864 2634 1820
0.8710 2439 0.870 2589 1830
0.8515 2855 0.843 3073 1840
0.8924 2100 0.866 2630 1850
0.9006 1971 0.869 2535 1860
0.8903 2171 0.864 2658 1870
0.8942 2027 0.882 2370 1880
0.8908 2182 0.867 2598 1890
0.8863 2175 0.861 2639 1900
0.8812 2324 0.862 2678 1910
0.8766 2420 0.850 2853 1920
0.8915 2143 0.868 2482 1930
0.8877 2143 0.873 2425 1940
0.8740 2415 0.855 2848 1950
0.8827 2253 0.870 2589 1960
0.8859 2123 0.879 2421 1970
0.8850 2139 0.877 2423 1980
0.8881 2048 0.880 2347 1990
0.8820 2194 0.870 2527 2000
0.8851 2164 0.873 2495 2010
0.8895 2118 0.873 2496 2020
0.8822 2247 0.865 2619 2030
0.8810 2258 0.879 2398 2040
0.8709 2450 0.855 2712 2050
0.8878 2114 0.881 2338 2060
0.8766 2331 0.862 2672 2070
0.8842 2210 0.878 2438 2080
0.8921 2030 0.877 2300 2090
0.8845 2214 0.871 2514 2100
0.8605 2615 0.845 2963 2110
0.8897 2100 0.888 2279 2120
0.8729 2471 0.856 2752 2130
0.8838 2242 0.868 2542 2140
0.8848 2192 0.871 2401 2150
0.8883 2155 0.878 2341 2160
0.8853 2169 0.877 2399 2170
0.8895 2058 0.884 2248 2180
0.8864 2162 0.883 2350 2190
0.8841 2158 0.873 2385 2200
0.8787 2314 0.872 2522 2210
0.8875 2094 0.878 2389 2220
0.8921 2035 0.888 2194 2230
0.8870 2144 0.887 2242 2240
0.8862 2165 0.876 2463 2250
0.8916 2011 0.891 2120 2260
0.8888 2074 0.879 2305 2270
0.8775 2268 0.867 2517 2280
0.8904 2017 0.887 2247 2290
0.8910 2025 0.878 2316 2300
0.8787 2244 0.874 2486 2310
0.8950 1993 0.881 2269 2320
0.8890 2041 0.883 2231 2330
0.8857 2164 0.877 2365 2340
0.8872 2046 0.879 2357 2350
0.8862 2079 0.881 2378 2360
0.8952 1968 0.887 2187 2370
0.8760 2388 0.866 2628 2380
0.8949 1950 0.891 2060 2390
0.8863 2108 0.872 2453 2400
0.8724 2405 0.861 2773 2410
0.8909 2035 0.887 2213 2420
0.8798 2314 0.868 2595 2430
0.8827 2184 0.881 2337 2440
0.8809 2280 0.863 2577 2450
0.8957 1936 0.891 2150 2460
0.8947 1996 0.895 2115 2470
0.8933 1982 0.887 2209 2480
0.8926 1961 0.887 2189 2490
0.8808 2203 0.878 2359 2500
0.8922 2064 0.893 2149 2510
0.8936 2041 0.882 2247 2520
0.8962 1955 0.885 2192 2530
0.8935 1984 0.883 2227 2540
0.8966 1978 0.896 2094 2550
0.8992 1938 0.890 2097 2560
0.8818 2238 0.876 2474 2570
0.8913 2006 0.900 2052 2580
0.8977 1915 0.896 2129 2590
0.8936 1973 0.889 2182 2600
0.8895 2043 0.888 2223 2610
0.8928 2030 0.886 2263 2620
0.8971 2014 0.884 2256 2630
0.8981 1934 0.891 2125 2640
0.8914 2043 0.887 2199 2650
0.8966 1957 0.890 2143 2660
0.8897 2036 0.887 2216 2670
0.8962 1914 0.890 2062 2680
0.8903 1993 0.891 2152 2690
0.8977 1881 0.896 2018 2700
0.8891 2074 0.887 2228 2710
0.8945 1963 0.888 2080 2720
0.8910 2037 0.888 2199 2730
0.8922 1967 0.895 2107 2740
0.8906 2005 0.882 2247 2750
0.8960 1925 0.894 2046 2760
0.8844 2205 0.858 2635 2770
0.9101 1737 0.888 2162 2780
0.9060 1731 0.890 2153 2790
0.9093 1711 0.884 2232 2800
0.9066 1753 0.895 2056 2810
0.9052 1754 0.896 2062 2820
0.9015 1851 0.882 2296 2830
0.9112 1675 0.899 1929 2840
0.9124 1668 0.892 2110 2850
0.9102 1632 0.900 1961 2860
0.9001 1859 0.885 2227 2870
0.9085 1684 0.895 2056 2880
0.8953 1918 0.886 2217 2890
0.9081 1689 0.899 2025 2900
0.8975 1967 0.880 2331 2910
0.8963 1896 0.886 2241 2920
0.9037 1817 0.894 2030 2930
0.9086 1748 0.898 2014 2940
0.9015 1906 0.892 2185 2950
0.9024 1763 0.893 2026 2960
0.9047 1727 0.898 1974 2970
0.9044 1800 0.892 2107 2980
0.9083 1716 0.905 1879 2990
0.9021 1782 0.892 2095 3000
0.8992 1959 0.887 2228 3010
0.9040 1782 0.897 2011 3020
0.9030 1808 0.887 2153 3030
0.8919 2009 0.877 2318 3040
0.9007 1846 0.897 2080 3050
0.9071 1691 0.902 1852 3060
0.8934 1938 0.886 2205 3070
0.9013 1886 0.893 2134 3080
0.9032 1782 0.896 1992 3090
0.8974 1890 0.886 2252 3100
0.8818 2233 0.869 2536 3110
0.9010 1905 0.895 2095 3120
0.8933 1981 0.884 2274 3130
0.9074 1705 0.899 1939 3140
0.9095 1754 0.897 1984 3150
0.9065 1735 0.907 1819 3160
0.9025 1769 0.894 2058 3170
0.9051 1695 0.905 1874 3180
0.9029 1762 0.904 1878 3190
0.9020 1799 0.898 2043 3200
0.8966 1917 0.892 2179 3210
0.9071 1712 0.903 1911 3220
0.8869 2143 0.871 2451 3230
0.9086 1671 0.904 1897 3240
0.8976 1928 0.884 2198 3250
0.9017 1807 0.891 2099 3260
0.9043 1755 0.899 1980 3270
0.9049 1763 0.898 1946 3280
0.9051 1698 0.898 1949 3290
0.9043 1749 0.894 2045 3300
0.9040 1724 0.901 1893 3310
0.9013 1832 0.889 2140 3320
0.9085 1732 0.902 1962 3330
0.8975 1901 0.889 2185 3340
0.8989 1945 0.883 2280 3350
0.9063 1751 0.898 2031 3360
0.9050 1759 0.897 1964 3370
0.9060 1764 0.896 1995 3380
0.8943 1949 0.887 2178 3390
0.8986 1866 0.895 2075 3400
0.9021 1882 0.891 2140 3410
0.9054 1730 0.903 1922 3420
0.8997 1980 0.882 2210 3430
0.9059 1735 0.894 1991 3440
0.9054 1796 0.903 1952 3450
0.9002 1914 0.891 2063 3460
0.9020 1831 0.892 2043 3470
0.9061 1774 0.900 1945 3480
0.9060 1735 0.900 1946 3490
0.9094 1656 0.904 1862 3500
0.9034 1775 0.898 1958 3510
0.9042 1786 0.897 1991 3520
0.8956 1933 0.895 2130 3530
0.9052 1716 0.900 1944 3540
0.9078 1672 0.901 1914 3550
0.9042 1749 0.893 2007 3560
0.9037 1741 0.899 1951 3570
0.8930 2007 0.887 2214 3580
0.9012 1846 0.895 2099 3590
0.9073 1628 0.907 1777 3600
0.8906 2048 0.888 2226 3610
0.9042 1728 0.898 2011 3620
0.8988 1861 0.895 2111 3630
0.9061 1761 0.904 1968 3640
0.9048 1789 0.897 1977 3650
0.9088 1625 0.908 1798 3660
0.8995 1802 0.896 2037 3670
0.9062 1778 0.897 2031 3680
0.9082 1671 0.899 1945 3690
0.9188 1578 0.894 2052 3700
0.9233 1468 0.904 1892 3710
0.9173 1493 0.897 2014 3720
0.9162 1594 0.893 2067 3730
0.9194 1475 0.895 2003 3740
0.9205 1515 0.902 1906 3750
0.9126 1655 0.892 2080 3760
0.9167 1524 0.897 1939 3770
0.9156 1553 0.905 1861 3780
0.9210 1523 0.904 1881 3790
0.9159 1671 0.894 2050 3800
0.9149 1570 0.905 1868 3810
0.9211 1533 0.902 1912 3820
0.9096 1724 0.887 2221 3830
0.9202 1495 0.908 1789 3840
0.9127 1630 0.896 1957 3850
0.9159 1545 0.899 1954 3860
0.9058 1904 0.884 2276 3870
0.9139 1613 0.902 2008 3880
0.9134 1581 0.909 1913 3890
0.9141 1562 0.901 1927 3900
0.9163 1526 0.900 1932 3910
0.9150 1525 0.908 1818 3920
0.9179 1516 0.905 1819 3930
0.9180 1508 0.911 1759 3940
0.9120 1582 0.900 2059 3950
0.9154 1574 0.901 1901 3960
0.9177 1546 0.904 1877 3970
0.9164 1571 0.910 1809 3980
0.9144 1579 0.908 1856 3990
0.9191 1471 0.910 1717 4000
INFO:tensorflow:Error reported to Coordinator: <type 'exceptions.RuntimeError'>, Attempted to use a closed Session.
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-7-687af6ae30fd> in <module>()
30 train_x_batch = [np.dstack((np.where(xx > 0, xx, 0), np.where(xx < 0, xx, 0)*-1)) for xx in train_x_batch]
31 train_data = {X: train_x_batch, Y_: train_y_batch, learning_rate:0.005, dropout:0.75}
---> 32 sess.run(train_step, feed_dict=train_data)
33 if i==0:
34 print 'Test Test Train Train'
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
/usr/local/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: