In [1]:
%autosave 2
%matplotlib inline
import numpy as np
import pandas
In [5]:
a = np.array([[1,2,3],[4,5,6]], dtype=np.float)
print(a.shape)
In [8]:
zeros = np.zeros((3,3,3), dtype=np.complex)
print(zeros)
print(zeros.shape)
In [17]:
a = np.array([1,2,3], ndmin=2)
print(a)
print(a.shape)
a[0][0]
Out[17]:
In [14]:
np.array([[1,2,3]], ndmin=1)
Out[14]:
In [24]:
a = np.array([[1,2,3],[4,5,6]])
print(a)
print(a[1][2])
print(a[1,2])
print(a[:,0])
In [35]:
a = np.array([1,2,3], ndmin=2)
print(a.T)
print(a[0].T)
In [41]:
a = np.arange(16)
b = a.reshape((4,4))
print(a is b)
print(b.flags.owndata)
c = b.T
print(b)
print(c)
print(c.flags.owndata)
print(a,)
In [44]:
a = np.arange(16)
a_view = a.reshape(4,4)
print(a.shape)
print(a_view.shape)
a_view[2] = -1
print(a)
print(a is a_view)
In [47]:
a = np.arange(16)
print(a.shape)
print(a.resize(4,4))
print(a)
a.shape = 8, 1, 2
print(a)
In [49]:
a = np.arange(16)
b = a.reshape(2, -1)
print(b.shape)
In [51]:
a = np.arange(16).reshape(2,2,2,2)
b = a[1,:,:,1]
print(b)
c = a[1,...,1]
print(c)
In [53]:
a = np.arange(16)
b = a[:,np.newaxis]
print(b)
print(b.shape)
In [60]:
a = np.arange(16).reshape(4,4)
index = [[0,1], [2,3]]
print(a[index])
In [68]:
a = np.arange(16).reshape(4,4)
print(a)
id1 = [0, 1]
id2 = [2, 3]
print(a[id1, id2])
In [75]:
a = np.arange(16).reshape(4,4)
index_tuple = (0,0)
index_list = np.array([0,0])
print(a[index_tuple] == a[0,0])
print(a[index_list])
In [76]:
a = np.arange(16).reshape(4,4)
index_tuple = (0, 0) + (np.newaxis,) * 5
print(a[index_tuple])
In [85]:
a = np.arange(16).reshape(4,4)
for x in a.flat:
print(x)
for x in a.reshape(-1):
print(x)
In [89]:
a = np.arange(16).reshape(4,4)
b = np.random.rand(4,4)
for i, x in enumerate(a):
print(i, x)
for i, x in np.ndenumerate(a):
print(i, x, b[i])
In [91]:
for i in np.ndindex(3,2):
print(i)
In [92]:
import math
In [93]:
math.sin(1)
Out[93]:
In [94]:
np.sin(np.arange(16))
Out[94]:
In [95]:
np.sin(1)
Out[95]:
In [96]:
np.sum(np.arange(16))
Out[96]:
In [97]:
a = np.arange(16)
a.sum()
Out[97]:
In [103]:
a = np.arange(16).reshape(4,4)
print(a.sum(axis=0))
print(a)
In [105]:
np.gradient(np.arange(3))
Out[105]:
In [106]:
np.diff(np.arange(3))
Out[106]:
In [115]:
a = np.arange(4).reshape(2,2)
b = np.arange(5,9).reshape(2,2)
print(a * b)
print(np.dot(a, b))
print(a @ b)
In [116]:
np.linalg.det(a)
Out[116]:
In [117]:
np.sqrt(-1.0)
Out[117]:
In [118]:
np.emath.sqrt(-1)
Out[118]:
In [ ]: