In [1]:
from pug.ann.data import weather
df = weather.daily('fresno')
print(df.describe())


       Max TemperatureF  Min TemperatureF  Max Dew PointF  MeanDew PointF  \
count         11.000000         11.000000       11.000000       11.000000   
mean          82.636364         82.636364       69.363636       69.363636   
std            6.422970          6.422970        4.863594        4.863594   
min           73.000000         73.000000       59.000000       59.000000   
25%           79.000000         79.000000       68.000000       68.000000   
50%           82.000000         82.000000       70.000000       70.000000   
75%           86.500000         86.500000       72.500000       72.500000   
max           95.000000         95.000000       75.000000       75.000000   

       Min DewpointF  Max Humidity  Mean Humidity  Min Humidity  \
count      11.000000     11.000000      11.000000     11.000000   
mean       69.363636     65.727273      65.727273     65.727273   
std         4.863594     17.158618      17.158618     17.158618   
min        59.000000     30.000000      30.000000     30.000000   
25%        68.000000     62.000000      62.000000     62.000000   
50%        70.000000     70.000000      70.000000     70.000000   
75%        72.500000     76.000000      76.000000     76.000000   
max        75.000000     88.000000      88.000000     88.000000   

       Max Sea Level PressureIn  Mean Sea Level PressureIn  \
count                 11.000000                  11.000000   
mean                  29.853636                  29.853636   
std                    0.087895                   0.087895   
min                   29.690000                  29.690000   
25%                   29.795000                  29.795000   
50%                   29.870000                  29.870000   
75%                   29.920000                  29.920000   
max                   29.970000                  29.970000   

       Min Sea Level PressureIn  Max VisibilityMiles  Mean VisibilityMiles  \
count                 11.000000            11.000000             11.000000   
mean                  29.853636             5.818182              5.818182   
std                    0.087895             0.404520              0.404520   
min                   29.690000             5.000000              5.000000   
25%                   29.795000             6.000000              6.000000   
50%                   29.870000             6.000000              6.000000   
75%                   29.920000             6.000000              6.000000   
max                   29.970000             6.000000              6.000000   

       Min VisibilityMiles  Max Wind SpeedMPH  Mean Wind SpeedMPH  \
count            11.000000          11.000000           11.000000   
mean              5.818182           7.818182            7.818182   
std               0.404520           5.776126            5.776126   
min               5.000000           0.000000            0.000000   
25%               6.000000           4.000000            4.000000   
50%               6.000000           8.000000            8.000000   
75%               6.000000          12.000000           12.000000   
max               6.000000          17.000000           17.000000   

       PrecipitationIn  CloudCover  WindDirDegrees  
count               11   11.000000       11.000000  
mean                 0    3.545455      142.545455  
std                  0    1.213560      104.781070  
min                  0    3.000000       -1.000000  
25%                  0    3.000000       30.000000  
50%                  0    3.000000      190.000000  
75%                  0    3.000000      220.000000  
max                  0    6.000000      270.000000  

In [2]:
from pug.ann import util
ds = util.pybrain_dataset_from_dataframe(df)
print(ds)


---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-2-a6a849cda0c6> in <module>()
----> 1 from pug.ann import util
      2 ds = util.pybrain_dataset_from_dataframe(df)
      3 print(ds)

/home/hobs/.virtualenvs/totalgood/lib/python2.7/site-packages/pug/ann/util.py in <module>()
     19 pb = pybrain
     20 # from pybrain.supervised.trainers import Trainer
---> 21 from pybrain.tools.customxml import NetworkReader
     22 from pybrain.structure.parametercontainer import ParameterContainer
     23 from pybrain.structure.connections.connection import Connection

ImportError: No module named customxml

In [7]:
nn = util.build_ann(ds)
print(nn)


FeedForwardNetwork-26
   Modules:
    [<LinearLayer 'input'>, <LinearLayer 'hidden'>, <LinearLayer 'output'>]
   Connections:
    [<FullConnection 'FullConnection-24': 'input' -> 'hidden'>, <FullConnection 'FullConnection-25': 'hidden' -> 'output'>]


In [8]:
train = util.pb.supervised.RPropMinusTrainer(nn)
print(train)


<RPropMinusTrainer 'RPropMinusTrainer-27'>

In [9]:
ans = train.trainUntilConvergence(ds, maxEpochs=10, verbose=True)
print(ans)


('train-errors:', '[4139.9   , 3955.19  , 3783.37  , 3593.29  , 3361.81  , 3090.66  , 2774.69  , 2410.03  , 1998.28  , 1471.81  , 884.475  ]')
('valid-errors:', '[4089.56  , 3908.32  , 3739.71  , 3553.19  , 3326.07  , 3060.06  , 2750.15  , 2392.57  , 1988.98  , 1473.55  , 894.674  , 423.093  ]')
([4139.8960310591647, 3955.191433542142, 3783.3687206428003, 3593.2905941074878, 3361.8118032012608, 3090.6559403249894, 2774.687119950866, 2410.0314517727843, 1998.2758315700733, 1471.8059671912513], [4089.558608459422, 3908.3175470810306, 3739.7128566666015, 3553.1868896701071, 3326.0701954487186, 3060.0598032364178, 2750.1454518823525, 2392.5749056935315, 1988.9815833485743, 1473.5486603940292, 894.67433311603281])