Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Downloading mnist: 9.92MB [00:02, 4.95MB/s]                            
Extracting mnist: 100%|██████████| 60.0K/60.0K [00:10<00:00, 5.57KFile/s]
Downloading celeba: 1.44GB [00:20, 68.8MB/s]                               
Extracting celeba...

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f1dbd229cf8>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f1dc4425c50>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [128]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [274]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    inputs_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, (None), name='learning_rate')

    return inputs_real, inputs_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [285]:
def discriminator(images, reuse=False, alpha=0.1):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    debug = False
    training = True
    
    with tf.variable_scope('discriminator', reuse=reuse):
        
        random_normal_init = tf.random_normal_initializer(mean=0, stddev=0.02)
        
        # Input layer is 28x28x3
        # Radford & Metz suggest not doing normalization on the 
        # generator output layer or discriminator input layer
        conv1 = tf.layers.conv2d(inputs=images,
                                 filters=64,
                                 kernel_size=5, # 5 means 5x5
                                 strides=2, # 2 means 2x2,
                                 padding='same',
                                 kernel_initializer=random_normal_init,
                                 activation=None)
        # leaky relu activation
        conv1 = tf.maximum(alpha * conv1, conv1)
        if debug:
            print("Expected shape: 14x14x64. conv1.shape: ", conv1.shape)
        
        conv2 = tf.layers.conv2d(inputs=conv1,
                                 filters=128,
                                 kernel_size=5, # 5 means 5x5
                                 strides=2, # 2 means 2x2,
                                 padding='same',
                                 kernel_initializer=random_normal_init,
                                 activation=None)
        # batch normalization
        conv2 = tf.layers.batch_normalization(conv2,
                                              training=training)
        # leaky relu activation
        conv2 = tf.maximum(alpha * conv2, conv2)
        if debug:
            print("Expected shape: 7x7x128. conv2.shape: ", conv2.shape)
        
        conv3 = tf.layers.conv2d(inputs=conv2,
                                 filters=256,
                                 kernel_size=5, # 5 means 5x5
                                 strides=2, # 2 means 2x2,
                                 padding='same',
                                 kernel_initializer=random_normal_init,
                                 activation=None)
        # batch normalization
        conv3 = tf.layers.batch_normalization(conv3,
                                              training=training)
        # leaky relu activation
        conv3 = tf.maximum(alpha * conv3, conv3)
        if debug:
            print("Expected shape: 4x4x256. conv3.shape: ", conv3.shape)
        
        flatten = tf.contrib.layers.flatten(conv3)
        
        # Only looking for one probability of a real image
        logits = tf.layers.dense(inputs=flatten,
                                 units=1)
        out = tf.sigmoid(logits)
        
        return out, logits

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [327]:
def generator(z, out_channel_dim, is_train=True, alpha=0.1):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    debug = False
    
    with tf.variable_scope('generator', reuse=not is_train):
        random_normal_init = tf.random_normal_initializer(mean=0, stddev=0.02)
 
        # First fully connected layer
        # has linear activation that will be turned into a leaky relu later
        fullyconn = tf.layers.dense(inputs=z, 
                                    kernel_initializer=random_normal_init,
                                    units=4*4*256)
        # reshape to fit conv
        fullyconn = tf.reshape(tensor=fullyconn, 
                               shape=(-1, 4, 4, 256))
        # normalize
        fullyconn = tf.layers.batch_normalization(fullyconn,
                                                  training=is_train)
        # leaky relu activation
        fullyconn = tf.maximum(alpha * fullyconn, fullyconn)
        if debug:
            print("Expected shape: 4x4x256. fullyconn.shape: ", fullyconn.shape)
        
        # convolutional transpose
        conv1 = tf.layers.conv2d_transpose(inputs=fullyconn,
                                           filters=128,
                                           kernel_size=4, # 5 means 5x5
                                           strides=1, # 2 means 2x2,
                                           padding='valid',
                                           kernel_initializer=random_normal_init)
        # batch normalization
        conv1 = tf.layers.batch_normalization(conv1,
                                              training=is_train)
        # leaky relu activation
        conv1 = tf.maximum(alpha * conv1, conv1)
        if debug:
            print("Expected shape: 14x14x256. conv1.shape: ", conv1.shape)
        
        # convolutional transpose
        conv2 = tf.layers.conv2d_transpose(inputs=conv1,
                                           filters=64,
                                           kernel_size=5, # 5 means 5x5
                                           strides=2, # 2 means 2x2,
                                           padding='same',
                                           kernel_initializer=random_normal_init)
        # batch normalization 
        conv2 = tf.layers.batch_normalization(conv2,
                                              training=is_train)
        # leaky relu activation
        conv2 = tf.maximum(alpha * conv2, conv2)
        if debug:
            print("Expected shape: 28x28x128. conv2.shape: ", conv2.shape)
        
        # Output transpose layer, 28x28x3
        logits = tf.layers.conv2d_transpose(inputs=conv2,
                                        filters=out_channel_dim,
                                        kernel_size=5,
                                        strides=2,
                                        padding='same',
                                        kernel_initializer=random_normal_init)
        # Radford & Metz suggest not doing normalization on the 
        # generator output layer or discriminator input layer
        if debug:
            print("Expected shape: 28x28x3. logits.shape: ", logits.shape)
            
        #logits = tf.image.resize_images(logits, [28,28])
            
        out = tf.tanh(logits)
        
        return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [328]:
def model_loss(input_real, input_z, out_channel_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # Source: DCGAN Exercise
    g_model = generator(input_z, out_channel_dim, is_train=True, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [329]:
def model_opt(d_loss, g_loss, learning_rate, beta1=0.5):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Separate out variables for discriminator vs generator
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [330]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [331]:
# Source: DCGAN notebook
class GAN:
    def __init__(self, real_size, z_size, learning_rate, alpha=0.1, beta1=0.5):
        real_width = real_size[1]
        real_height = real_size[2]
        real_depth = real_size[3]
        self.input_real, self.input_z, self.learning_rate = model_inputs(real_width, real_height, real_depth, z_size)
        self.d_loss, self.g_loss = model_loss(self.input_real, self.input_z, real_depth, alpha)
        self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, beta1)

In [335]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode, print_every=50, show_every=100, figsize=(5,5)):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    debug = False
    net = GAN(data_shape, z_dim, learning_rate, 0.2, beta1)
    data_min = -1.0
    data_max = 1.0
    saver = tf.train.Saver()
    
    # Random Noise for sampling from generator
    sample_z = np.random.uniform(data_min, data_max, size=(72, z_dim))
    
    samples, losses = [], []
    steps = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                steps += 1
                batch_images = batch_images * 2
                
                # Training noise for generator
                batch_z = np.random.uniform(data_min, data_max, size=(batch_size, z_dim))
                
                # optimize discriminator
                if debug:
                    print("optimizing discriminator...")
                d_session = sess.run(net.d_opt, feed_dict={net.input_real: batch_images, net.input_z: batch_z, net.learning_rate: learning_rate})
                # optimize generator
                if debug:
                    print("optimizing generator...")
                g_session = sess.run(net.g_opt, feed_dict={net.input_real: batch_images, net.input_z: batch_z, net.learning_rate: learning_rate})
                # optimize generator
                if debug:
                    print("optimizing generator...")
                g_session = sess.run(net.g_opt, feed_dict={net.input_real: batch_images, net.input_z: batch_z, net.learning_rate: learning_rate})
            
                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: batch_images})
                    train_loss_g = net.g_loss.eval({net.input_z: batch_z})

                    print("Epoch {}/{} Step {}...".format(epoch_i+1, epoch_count, steps),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    show_generator_output(sess, 10, net.input_z, data_shape[3], data_image_mode)
                
    return losses, samples

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [336]:
batch_size = 128
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5

tf.reset_default_graph()

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2 Step 50... Discriminator Loss: 0.8909... Generator Loss: 1.9035
Epoch 1/2 Step 100... Discriminator Loss: 0.8582... Generator Loss: 1.2287
Epoch 1/2 Step 150... Discriminator Loss: 0.9675... Generator Loss: 0.7354
Epoch 1/2 Step 200... Discriminator Loss: 1.0900... Generator Loss: 1.5823
Epoch 1/2 Step 250... Discriminator Loss: 1.0245... Generator Loss: 0.6823
Epoch 1/2 Step 300... Discriminator Loss: 1.0927... Generator Loss: 0.9642
Epoch 1/2 Step 350... Discriminator Loss: 0.9652... Generator Loss: 0.8235
Epoch 1/2 Step 400... Discriminator Loss: 1.0852... Generator Loss: 0.8353
Epoch 1/2 Step 450... Discriminator Loss: 1.1981... Generator Loss: 1.1078
Epoch 2/2 Step 500... Discriminator Loss: 1.1855... Generator Loss: 1.4704
Epoch 2/2 Step 550... Discriminator Loss: 1.1642... Generator Loss: 0.6507
Epoch 2/2 Step 600... Discriminator Loss: 1.0920... Generator Loss: 0.6307
Epoch 2/2 Step 650... Discriminator Loss: 1.1882... Generator Loss: 0.5182
Epoch 2/2 Step 700... Discriminator Loss: 1.1298... Generator Loss: 1.4479
Epoch 2/2 Step 750... Discriminator Loss: 1.0442... Generator Loss: 0.7686
Epoch 2/2 Step 800... Discriminator Loss: 1.1361... Generator Loss: 0.5897
Epoch 2/2 Step 850... Discriminator Loss: 1.0430... Generator Loss: 1.4881
Epoch 2/2 Step 900... Discriminator Loss: 1.0651... Generator Loss: 0.7234

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [337]:
batch_size = 128
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5

tf.reset_default_graph()

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1 Step 50... Discriminator Loss: 0.7522... Generator Loss: 1.3424
Epoch 1/1 Step 100... Discriminator Loss: 0.7755... Generator Loss: 1.3332
Epoch 1/1 Step 150... Discriminator Loss: 0.9549... Generator Loss: 0.9352
Epoch 1/1 Step 200... Discriminator Loss: 1.2559... Generator Loss: 0.8412
Epoch 1/1 Step 250... Discriminator Loss: 1.6504... Generator Loss: 0.7247
Epoch 1/1 Step 300... Discriminator Loss: 1.4135... Generator Loss: 0.7426
Epoch 1/1 Step 350... Discriminator Loss: 1.2675... Generator Loss: 0.7796
Epoch 1/1 Step 400... Discriminator Loss: 1.4590... Generator Loss: 0.6522
Epoch 1/1 Step 450... Discriminator Loss: 1.2692... Generator Loss: 0.9168
Epoch 1/1 Step 500... Discriminator Loss: 1.2563... Generator Loss: 0.9091
Epoch 1/1 Step 550... Discriminator Loss: 1.6453... Generator Loss: 0.6214
Epoch 1/1 Step 600... Discriminator Loss: 1.2173... Generator Loss: 0.7894
Epoch 1/1 Step 650... Discriminator Loss: 1.3812... Generator Loss: 0.7033
Epoch 1/1 Step 700... Discriminator Loss: 1.4257... Generator Loss: 0.7733
Epoch 1/1 Step 750... Discriminator Loss: 1.4079... Generator Loss: 0.6785
Epoch 1/1 Step 800... Discriminator Loss: 1.5045... Generator Loss: 0.4949
Epoch 1/1 Step 850... Discriminator Loss: 1.6661... Generator Loss: 0.5462
Epoch 1/1 Step 900... Discriminator Loss: 1.4075... Generator Loss: 0.6740
Epoch 1/1 Step 950... Discriminator Loss: 1.5059... Generator Loss: 0.5105
Epoch 1/1 Step 1000... Discriminator Loss: 1.3820... Generator Loss: 0.7678
Epoch 1/1 Step 1050... Discriminator Loss: 1.3695... Generator Loss: 0.6750
Epoch 1/1 Step 1100... Discriminator Loss: 1.4487... Generator Loss: 0.7095
Epoch 1/1 Step 1150... Discriminator Loss: 1.4271... Generator Loss: 0.7009
Epoch 1/1 Step 1200... Discriminator Loss: 1.4969... Generator Loss: 0.6356
Epoch 1/1 Step 1250... Discriminator Loss: 1.5271... Generator Loss: 0.6337
Epoch 1/1 Step 1300... Discriminator Loss: 1.4540... Generator Loss: 0.5647
Epoch 1/1 Step 1350... Discriminator Loss: 1.3652... Generator Loss: 0.6731
Epoch 1/1 Step 1400... Discriminator Loss: 1.3246... Generator Loss: 0.6383
Epoch 1/1 Step 1450... Discriminator Loss: 1.4731... Generator Loss: 0.6587
Epoch 1/1 Step 1500... Discriminator Loss: 1.4498... Generator Loss: 0.6059
Epoch 1/1 Step 1550... Discriminator Loss: 1.3928... Generator Loss: 0.7150

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.


In [ ]: