Deep Convolutional GANs

In this notebook, you'll build a GAN using convolutional layers in the generator and discriminator. This is called a Deep Convolutional GAN, or DCGAN for short. The DCGAN architecture was first explored last year and has seen impressive results in generating new images, you can read the original paper here.

You'll be training DCGAN on the Street View House Numbers (SVHN) dataset. These are color images of house numbers collected from Google street view. SVHN images are in color and much more variable than MNIST.

So, we'll need a deeper and more powerful network. This is accomplished through using convolutional layers in the discriminator and generator. It's also necessary to use batch normalization to get the convolutional networks to train. The only real changes compared to what you saw previously are in the generator and discriminator, otherwise the rest of the implementation is the same.


In [1]:
%matplotlib inline

import pickle as pkl

import matplotlib.pyplot as plt
import numpy as np
from scipy.io import loadmat
import tensorflow as tf

In [2]:
!mkdir data


mkdir: cannot create directory ‘data’: File exists

Getting the data

Here you can download the SVHN dataset. Run the cell above and it'll download to your machine.


In [3]:
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm

data_dir = 'data/'

if not isdir(data_dir):
    raise Exception("Data directory doesn't exist!")

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(data_dir + "train_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
            data_dir + 'train_32x32.mat',
            pbar.hook)

if not isfile(data_dir + "test_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Testing Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
            data_dir + 'test_32x32.mat',
            pbar.hook)

These SVHN files are .mat files typically used with Matlab. However, we can load them in with scipy.io.loadmat which we imported above.


In [6]:
trainset = loadmat(data_dir + 'train_32x32.mat')
testset = loadmat(data_dir + 'test_32x32.mat')

Here I'm showing a small sample of the images. Each of these is 32x32 with 3 color channels (RGB). These are the real images we'll pass to the discriminator and what the generator will eventually fake.


In [7]:
idx = np.random.randint(0, trainset['X'].shape[3], size=36)
fig, axes = plt.subplots(6, 6, sharex=True, sharey=True, figsize=(5,5),)
for ii, ax in zip(idx, axes.flatten()):
    ax.imshow(trainset['X'][:,:,:,ii], aspect='equal')
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
plt.subplots_adjust(wspace=0, hspace=0)


Here we need to do a bit of preprocessing and getting the images into a form where we can pass batches to the network. First off, we need to rescale the images to a range of -1 to 1, since the output of our generator is also in that range. We also have a set of test and validation images which could be used if we're trying to identify the numbers in the images.


In [8]:
def scale(x, feature_range=(-1, 1)):
    # scale to (0, 1)
    x = ((x - x.min())/(255 - x.min()))
    
    # scale to feature_range
    min, max = feature_range
    x = x * (max - min) + min
    return x

In [9]:
class Dataset:
    def __init__(self, train, test, val_frac=0.5, shuffle=False, scale_func=None):
        split_idx = int(len(test['y'])*(1 - val_frac))
        self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
        self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
        self.train_x, self.train_y = train['X'], train['y']
        
        self.train_x = np.rollaxis(self.train_x, 3)
        self.valid_x = np.rollaxis(self.valid_x, 3)
        self.test_x = np.rollaxis(self.test_x, 3)
        
        if scale_func is None:
            self.scaler = scale
        else:
            self.scaler = scale_func
        self.shuffle = shuffle
        
    def batches(self, batch_size):
        if self.shuffle:
            idx = np.arange(len(dataset.train_x))
            np.random.shuffle(idx)
            self.train_x = self.train_x[idx]
            self.train_y = self.train_y[idx]
        
        n_batches = len(self.train_y)//batch_size
        for ii in range(0, len(self.train_y), batch_size):
            x = self.train_x[ii:ii+batch_size]
            y = self.train_y[ii:ii+batch_size]
            
            yield self.scaler(x), y

Network Inputs

Here, just creating some placeholders like normal.


In [10]:
def model_inputs(real_dim, z_dim):
    inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    
    return inputs_real, inputs_z

Generator

Here you'll build the generator network. The input will be our noise vector z as before. Also as before, the output will be a $tanh$ output, but this time with size 32x32 which is the size of our SVHN images.

What's new here is we'll use convolutional layers to create our new images. The first layer is a fully connected layer which is reshaped into a deep and narrow layer, something like 4x4x1024 as in the original DCGAN paper. Then we use batch normalization and a leaky ReLU activation. Next is a transposed convolution where typically you'd halve the depth and double the width and height of the previous layer. Again, we use batch normalization and leaky ReLU. For each of these layers, the general scheme is convolution > batch norm > leaky ReLU.

You keep stacking layers up like this until you get the final transposed convolution layer with shape 32x32x3. Below is the archicture used in the original DCGAN paper:

Note that the final layer here is 64x64x3, while for our SVHN dataset, we only want it to be 32x32x3.

Exercise: Build the transposed convolutional network for the generator in the function below. Be sure to use leaky ReLUs on all the layers except for the last tanh layer, as well as batch normalization on all the transposed convolutional layers except the last one.


In [64]:
def generator(z, output_dim, reuse=False, alpha=0.2, training=True):
    with tf.variable_scope('generator', reuse=reuse):
        # First fully connected layer
        # has linear activation that will be turned into a leaky relu later
        fullyconn = tf.layers.dense(inputs=z, 
                                    units=4*4*512)
        # reshape to fit conv
        fullyconn = tf.reshape(tensor=fullyconn, 
                               shape=(-1, 4, 4, 512))
        # normalize
        fullyconn = tf.layers.batch_normalization(fullyconn,
                                                  training=training)
        # leaky relu activation
        fullyconn = tf.maximum(alpha * fullyconn, fullyconn)
        print("Expected shape: 4x4x512. fullyconn.shape: ", fullyconn.shape)
        
        # convolutional transpose
        conv1 = tf.layers.conv2d_transpose(inputs=fullyconn,
                                           filters=256,
                                           kernel_size=5, # 5 means 5x5
                                           strides=2, # 2 means 2x2,
                                           padding='same')
        # batch normalization
        conv1 = tf.layers.batch_normalization(conv1,
                                              training=training)
        # leaky relu activation
        conv1 = tf.maximum(alpha * conv1, conv1)
        print("Expected shape: 8x8x256. conv1.shape: ", conv1.shape)
        
        # convolutional transpose
        conv2 = tf.layers.conv2d_transpose(inputs=conv1,
                                           filters=128,
                                           kernel_size=5, # 5 means 5x5
                                           strides=2, # 2 means 2x2,
                                           padding='same')
        # batch normalization
        conv2 = tf.layers.batch_normalization(conv2,
                                              training=training)
        # leaky relu activation
        conv2 = tf.maximum(alpha * conv2, conv2)
        print("Expected shape: 16x16x128. conv2.shape: ", conv2.shape)
        
        # Output transpose layer, 32x32x3
        logits = tf.layers.conv2d_transpose(inputs=conv2,
                                        filters=3,
                                        kernel_size=output_dim,
                                        strides=2,
                                        padding='same')
        print("Expected shape: 32x32x3. logits.shape: ", logits.shape)
        
        out = tf.tanh(logits)
        
        return out

Discriminator

Here you'll build the discriminator. This is basically just a convolutional classifier like you've built before. The input to the discriminator are 32x32x3 tensors/images. You'll want a few convolutional layers, then a fully connected layer for the output. As before, we want a sigmoid output, and you'll need to return the logits as well. For the depths of the convolutional layers I suggest starting with 16, 32, 64 filters in the first layer, then double the depth as you add layers. Note that in the DCGAN paper, they did all the downsampling using only strided convolutional layers with no maxpool layers.

You'll also want to use batch normalization with tf.layers.batch_normalization on each layer except the first convolutional and output layers. Again, each layer should look something like convolution > batch norm > leaky ReLU.

Note: in this project, your batch normalization layers will always use batch statistics. (That is, always set training to True.) That's because we are only interested in using the discriminator to help train the generator. However, if you wanted to use the discriminator for inference later, then you would need to set the training parameter appropriately.

Exercise: Build the convolutional network for the discriminator. The input is a 32x32x3 images, the output is a sigmoid plus the logits. Again, use Leaky ReLU activations and batch normalization on all the layers except the first.


In [72]:
def discriminator(x, reuse=False, alpha=0.2):
    # Set to true, may want to parameterize if we want to use the discriminator independently
    training = True
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 32x32x3
        conv1 = tf.layers.conv2d(inputs=x,
                                 filters=64,
                                 kernel_size=5, # 5 means 5x5
                                 strides=2, # 2 means 2x2,
                                 padding='same')
        # leaky relu activation
        conv1 = tf.maximum(alpha * conv1, conv1)
        print("Expected shape: 16x16x64. conv1.shape: ", conv1.shape)
        
        conv2 = tf.layers.conv2d(inputs=conv1,
                                 filters=128,
                                 kernel_size=5, # 5 means 5x5
                                 strides=2, # 2 means 2x2,
                                 padding='same')
        # batch normalization
        conv2 = tf.layers.batch_normalization(conv2,
                                              training=training)
        # leaky relu activation
        conv2 = tf.maximum(alpha * conv2, conv2)
        print("Expected shape: 8x8x128. conv2.shape: ", conv2.shape)
        
        conv3 = tf.layers.conv2d(inputs=conv2,
                                 filters=256,
                                 kernel_size=5, # 5 means 5x5
                                 strides=2, # 2 means 2x2,
                                 padding='same')
        # batch normalization
        conv3 = tf.layers.batch_normalization(conv3,
                                              training=training)
        # leaky relu activation
        conv3 = tf.maximum(alpha * conv3, conv3)
        print("Expected shape: 4x4x256. conv3.shape: ", conv3.shape)
        
        flatten = tf.reshape(tensor=conv3, 
                             shape=(-1, 4*4*256)) 
        # Only looking for one probability of a real image
        logits = tf.layers.dense(inputs=flatten,
                                 units=1)
        out = tf.sigmoid(logits)
        
        return out, logits

Model Loss

Calculating the loss like before, nothing new here.


In [73]:
def model_loss(input_real, input_z, output_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, output_dim, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss

Optimizers

Not much new here, but notice how the train operations are wrapped in a with tf.control_dependencies block so the batch normalization layers can update their population statistics.


In [74]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

Building the model

Here we can use the functions we defined about to build the model as a class. This will make it easier to move the network around in our code since the nodes and operations in the graph are packaged in one object.


In [75]:
class GAN:
    def __init__(self, real_size, z_size, learning_rate, alpha=0.2, beta1=0.5):
        tf.reset_default_graph()
        
        self.input_real, self.input_z = model_inputs(real_size, z_size)
        
        self.d_loss, self.g_loss = model_loss(self.input_real, self.input_z,
                                              real_size[2], alpha=0.2)
        
        self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, beta1)

Here is a function for displaying generated images.


In [76]:
def view_samples(epoch, samples, nrows, ncols, figsize=(5,5)):
    fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, 
                             sharey=True, sharex=True)
    for ax, img in zip(axes.flatten(), samples[epoch]):
        ax.axis('off')
        img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
        ax.set_adjustable('box-forced')
        im = ax.imshow(img, aspect='equal')
   
    plt.subplots_adjust(wspace=0, hspace=0)
    return fig, axes

And another function we can use to train our network. Notice when we call generator to create the samples to display, we set training to False. That's so the batch normalization layers will use the population statistics rather than the batch statistics. Also notice that we set the net.input_real placeholder when we run the generator's optimizer. The generator doesn't actually use it, but we'd get an error without it because of the tf.control_dependencies block we created in model_opt.


In [77]:
def train(net, dataset, epochs, batch_size, print_every=10, show_every=100, figsize=(5,5)):
    saver = tf.train.Saver()
    sample_z = np.random.uniform(-1, 1, size=(72, z_size))

    samples, losses = [], []
    steps = 0

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            for x, y in dataset.batches(batch_size):
                steps += 1

                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))

                # Run optimizers
                _ = sess.run(net.d_opt, feed_dict={net.input_real: x, net.input_z: batch_z})
                _ = sess.run(net.g_opt, feed_dict={net.input_z: batch_z, net.input_real: x})

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: x})
                    train_loss_g = net.g_loss.eval({net.input_z: batch_z})

                    print("Epoch {}/{}...".format(e+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    gen_samples = sess.run(
                                   generator(net.input_z, 3, reuse=True, training=False),
                                   feed_dict={net.input_z: sample_z})
                    samples.append(gen_samples)
                    _ = view_samples(-1, samples, 6, 12, figsize=figsize)
                    plt.show()

        saver.save(sess, './checkpoints/generator.ckpt')

    with open('samples.pkl', 'wb') as f:
        pkl.dump(samples, f)
    
    return losses, samples

Hyperparameters

GANs are very sensitive to hyperparameters. A lot of experimentation goes into finding the best hyperparameters such that the generator and discriminator don't overpower each other. Try out your own hyperparameters or read the DCGAN paper to see what worked for them.

Exercise: Find hyperparameters to train this GAN. The values found in the DCGAN paper work well, or you can experiment on your own. In general, you want the discriminator loss to be around 0.3, this means it is correctly classifying images as fake or real about 50% of the time.


In [78]:
real_size = (32,32,3)
z_size = 100
learning_rate = 0.0002
batch_size = 64
epochs = 1
alpha = 0.01
beta1 = 0.5

# Create the network
net = GAN(real_size, z_size, learning_rate, alpha=alpha, beta1=beta1)


Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Expected shape: 16x16x64. conv1.shape:  (?, 16, 16, 64)
Expected shape: 8x8x128. conv2.shape:  (?, 8, 8, 128)
Expected shape: 4x4x256. conv3.shape:  (?, 4, 4, 256)
Expected shape: 16x16x64. conv1.shape:  (?, 16, 16, 64)
Expected shape: 8x8x128. conv2.shape:  (?, 8, 8, 128)
Expected shape: 4x4x256. conv3.shape:  (?, 4, 4, 256)

In [79]:
# Load the data and train the network here
dataset = Dataset(trainset, testset)
losses, samples = train(net, dataset, epochs, batch_size, figsize=(10,5))


Epoch 1/1... Discriminator Loss: 1.6247... Generator Loss: 0.3716
Epoch 1/1... Discriminator Loss: 0.4029... Generator Loss: 1.5759
Epoch 1/1... Discriminator Loss: 0.4080... Generator Loss: 1.5694
Epoch 1/1... Discriminator Loss: 0.1795... Generator Loss: 2.3780
Epoch 1/1... Discriminator Loss: 0.2258... Generator Loss: 2.3135
Epoch 1/1... Discriminator Loss: 0.1827... Generator Loss: 2.3297
Epoch 1/1... Discriminator Loss: 0.0670... Generator Loss: 3.4034
Epoch 1/1... Discriminator Loss: 0.1018... Generator Loss: 3.2372
Epoch 1/1... Discriminator Loss: 0.1046... Generator Loss: 3.9767
Epoch 1/1... Discriminator Loss: 0.3144... Generator Loss: 2.1512
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 1.4251... Generator Loss: 2.1779
Epoch 1/1... Discriminator Loss: 0.4554... Generator Loss: 1.8656
Epoch 1/1... Discriminator Loss: 0.7620... Generator Loss: 2.2354
Epoch 1/1... Discriminator Loss: 0.9069... Generator Loss: 1.9934
Epoch 1/1... Discriminator Loss: 0.5458... Generator Loss: 1.3720
Epoch 1/1... Discriminator Loss: 0.5000... Generator Loss: 3.2591
Epoch 1/1... Discriminator Loss: 0.4170... Generator Loss: 2.6228
Epoch 1/1... Discriminator Loss: 0.4309... Generator Loss: 2.1851
Epoch 1/1... Discriminator Loss: 0.6135... Generator Loss: 1.3557
Epoch 1/1... Discriminator Loss: 0.5098... Generator Loss: 5.1608
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 0.4894... Generator Loss: 2.5510
Epoch 1/1... Discriminator Loss: 0.8898... Generator Loss: 0.7973
Epoch 1/1... Discriminator Loss: 0.6794... Generator Loss: 1.6704
Epoch 1/1... Discriminator Loss: 1.1553... Generator Loss: 0.8329
Epoch 1/1... Discriminator Loss: 0.6636... Generator Loss: 1.3354
Epoch 1/1... Discriminator Loss: 0.7363... Generator Loss: 1.2999
Epoch 1/1... Discriminator Loss: 1.9095... Generator Loss: 0.5034
Epoch 1/1... Discriminator Loss: 1.2108... Generator Loss: 1.2126
Epoch 1/1... Discriminator Loss: 0.8668... Generator Loss: 1.2989
Epoch 1/1... Discriminator Loss: 0.7322... Generator Loss: 1.1017
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 0.6749... Generator Loss: 1.5062
Epoch 1/1... Discriminator Loss: 0.4988... Generator Loss: 1.3273
Epoch 1/1... Discriminator Loss: 0.5533... Generator Loss: 1.2679
Epoch 1/1... Discriminator Loss: 0.8614... Generator Loss: 0.8339
Epoch 1/1... Discriminator Loss: 0.6266... Generator Loss: 2.1472
Epoch 1/1... Discriminator Loss: 1.4999... Generator Loss: 1.5104
Epoch 1/1... Discriminator Loss: 1.0103... Generator Loss: 2.2095
Epoch 1/1... Discriminator Loss: 0.4958... Generator Loss: 1.7899
Epoch 1/1... Discriminator Loss: 0.7103... Generator Loss: 1.2209
Epoch 1/1... Discriminator Loss: 0.6935... Generator Loss: 1.5617
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 0.7717... Generator Loss: 0.9393
Epoch 1/1... Discriminator Loss: 0.6915... Generator Loss: 1.3871
Epoch 1/1... Discriminator Loss: 0.8835... Generator Loss: 1.0519
Epoch 1/1... Discriminator Loss: 0.8737... Generator Loss: 1.5956
Epoch 1/1... Discriminator Loss: 0.6055... Generator Loss: 1.2692
Epoch 1/1... Discriminator Loss: 0.8256... Generator Loss: 2.1341
Epoch 1/1... Discriminator Loss: 1.1776... Generator Loss: 0.6180
Epoch 1/1... Discriminator Loss: 0.9191... Generator Loss: 0.9865
Epoch 1/1... Discriminator Loss: 0.7442... Generator Loss: 0.9735
Epoch 1/1... Discriminator Loss: 1.2340... Generator Loss: 0.6363
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 0.9013... Generator Loss: 0.9769
Epoch 1/1... Discriminator Loss: 0.9274... Generator Loss: 1.0299
Epoch 1/1... Discriminator Loss: 0.9344... Generator Loss: 0.9845
Epoch 1/1... Discriminator Loss: 1.0625... Generator Loss: 1.2013
Epoch 1/1... Discriminator Loss: 0.8134... Generator Loss: 2.0939
Epoch 1/1... Discriminator Loss: 0.8123... Generator Loss: 1.5033
Epoch 1/1... Discriminator Loss: 1.0037... Generator Loss: 1.0656
Epoch 1/1... Discriminator Loss: 1.0516... Generator Loss: 1.0789
Epoch 1/1... Discriminator Loss: 0.9896... Generator Loss: 0.6415
Epoch 1/1... Discriminator Loss: 0.8968... Generator Loss: 0.9168
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 1.0000... Generator Loss: 0.9021
Epoch 1/1... Discriminator Loss: 1.1796... Generator Loss: 1.3152
Epoch 1/1... Discriminator Loss: 0.8650... Generator Loss: 1.2870
Epoch 1/1... Discriminator Loss: 0.9616... Generator Loss: 0.7892
Epoch 1/1... Discriminator Loss: 1.0101... Generator Loss: 0.9277
Epoch 1/1... Discriminator Loss: 0.7867... Generator Loss: 1.2802
Epoch 1/1... Discriminator Loss: 1.1241... Generator Loss: 0.8510
Epoch 1/1... Discriminator Loss: 1.2095... Generator Loss: 0.9303
Epoch 1/1... Discriminator Loss: 0.9191... Generator Loss: 0.9166
Epoch 1/1... Discriminator Loss: 1.3088... Generator Loss: 0.9093
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 1.3729... Generator Loss: 0.6072
Epoch 1/1... Discriminator Loss: 0.9661... Generator Loss: 1.4022
Epoch 1/1... Discriminator Loss: 1.1155... Generator Loss: 0.8343
Epoch 1/1... Discriminator Loss: 1.1348... Generator Loss: 0.8416
Epoch 1/1... Discriminator Loss: 1.1597... Generator Loss: 0.7831
Epoch 1/1... Discriminator Loss: 1.1879... Generator Loss: 0.7857
Epoch 1/1... Discriminator Loss: 1.0689... Generator Loss: 0.9835
Epoch 1/1... Discriminator Loss: 0.7623... Generator Loss: 1.3879
Epoch 1/1... Discriminator Loss: 1.0135... Generator Loss: 0.9021
Epoch 1/1... Discriminator Loss: 1.1650... Generator Loss: 0.9558
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 1.2099... Generator Loss: 1.0244
Epoch 1/1... Discriminator Loss: 1.1009... Generator Loss: 1.0485
Epoch 1/1... Discriminator Loss: 1.1800... Generator Loss: 0.7682
Epoch 1/1... Discriminator Loss: 1.1945... Generator Loss: 0.8828
Epoch 1/1... Discriminator Loss: 1.0750... Generator Loss: 1.0051
Epoch 1/1... Discriminator Loss: 1.3312... Generator Loss: 0.7499
Epoch 1/1... Discriminator Loss: 1.1243... Generator Loss: 0.8865
Epoch 1/1... Discriminator Loss: 1.1954... Generator Loss: 0.8676
Epoch 1/1... Discriminator Loss: 1.3233... Generator Loss: 0.4595
Epoch 1/1... Discriminator Loss: 1.0790... Generator Loss: 0.8052
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 1.2156... Generator Loss: 0.6005
Epoch 1/1... Discriminator Loss: 1.1889... Generator Loss: 0.7874
Epoch 1/1... Discriminator Loss: 1.2949... Generator Loss: 0.6651
Epoch 1/1... Discriminator Loss: 1.2265... Generator Loss: 0.8576
Epoch 1/1... Discriminator Loss: 1.1482... Generator Loss: 0.8140
Epoch 1/1... Discriminator Loss: 0.9334... Generator Loss: 1.0578
Epoch 1/1... Discriminator Loss: 1.0863... Generator Loss: 0.8967
Epoch 1/1... Discriminator Loss: 1.0763... Generator Loss: 0.8713
Epoch 1/1... Discriminator Loss: 1.0475... Generator Loss: 0.9287
Epoch 1/1... Discriminator Loss: 1.4689... Generator Loss: 0.7680
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 1.1217... Generator Loss: 0.9189
Epoch 1/1... Discriminator Loss: 1.1462... Generator Loss: 0.8903
Epoch 1/1... Discriminator Loss: 1.0526... Generator Loss: 0.8044
Epoch 1/1... Discriminator Loss: 1.3111... Generator Loss: 1.0075
Epoch 1/1... Discriminator Loss: 1.1836... Generator Loss: 0.9228
Epoch 1/1... Discriminator Loss: 0.9500... Generator Loss: 0.8058
Epoch 1/1... Discriminator Loss: 1.4760... Generator Loss: 0.5283
Epoch 1/1... Discriminator Loss: 1.3169... Generator Loss: 0.5744
Epoch 1/1... Discriminator Loss: 1.1455... Generator Loss: 0.7271
Epoch 1/1... Discriminator Loss: 1.0092... Generator Loss: 1.1538
Expected shape: 4x4x512. fullyconn.shape:  (?, 4, 4, 512)
Expected shape: 8x8x256. conv1.shape:  (?, 8, 8, 256)
Expected shape: 16x16x128. conv2.shape:  (?, 16, 16, 128)
Expected shape: 32x32x3. logits.shape:  (?, 32, 32, 3)
Epoch 1/1... Discriminator Loss: 0.9849... Generator Loss: 0.7895
Epoch 1/1... Discriminator Loss: 0.9602... Generator Loss: 0.9608
Epoch 1/1... Discriminator Loss: 0.9610... Generator Loss: 1.2926
Epoch 1/1... Discriminator Loss: 1.6058... Generator Loss: 0.4713

In [80]:
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()


Out[80]:
<matplotlib.legend.Legend at 0x7f96c485d898>

In [81]:
_ = view_samples(-1, samples, 6, 12, figsize=(10,5))



In [ ]: