In [1]:
import numpy as np
import tensorflow as tf
import tensorboard_jupyter as tb
sess = tf.Session()
# いろんな行列を作る
identity_matrix = tf.diag([1.0, 1.0, 1.0])
A = tf.truncated_normal([2, 3])
B = tf.fill([2,3], 5.0)
C = tf.random_uniform([3, 2])
D = tf.convert_to_tensor(np.array([[1.,2.,3.], [-3., -7., -1.], [0., 5., -2.]]))
print('identity matrix')
print(sess.run(identity_matrix))
print('A')
print(sess.run(A))
print('B')
print(sess.run(B))
print('C')
print(sess.run(C))
print('D')
print(sess.run(D))
In [2]:
# 加算
print(sess.run(A+B))
In [3]:
# 減算
print(sess.run(B-B))
In [4]:
# 乗算
print(sess.run(tf.matmul(B, identity_matrix)))
In [5]:
# 転置
print(sess.run(tf.transpose(C)))
In [6]:
# 行列式
print(sess.run(tf.matrix_determinant(D)))
In [7]:
# 逆行列
print(sess.run(tf.matrix_inverse(D)))
In [8]:
# コレスキー分解
print(sess.run(tf.cholesky(identity_matrix)))
In [9]:
# 固有値
eigenvalues, eigenvectors = sess.run(tf.self_adjoint_eig(D))
print('eigenvalues:', eigenvalues)
print('eigenvectors:', eigenvectors)
In [ ]: