In [1]:
# 変数の作成
import tensorflow as tf
import numpy as np
import tensorboard_jupyter as tb
my_var = tf.Variable(tf.zeros([2,3]))
# 変数は初期化しないとエラーになる
initialize_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(initialize_op)
sess.run(my_var)
tf.summary.FileWriter('./log/', sess.graph)
tb.show_graph(tf.get_default_graph().as_graph_def())
In [2]:
sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[2,2])
# yはxの恒等関数
y = tf.identity(x)
x_vals = np.random.rand(2,2)
sess.run(y, feed_dict = {x: x_vals})
with tf.Session() as sess:
result = sess.run(y, feed_dict = {x: x_vals})
print(result)
tf.summary.FileWriter('./log/', sess.graph)
tb.show_graph(tf.get_default_graph().as_graph_def())
In [3]:
with tf.Session() as sess:
first_var = tf.Variable(tf.zeros([2,3]))
sess.run(first_var.initializer)
second_var = tf.Variable(tf.zeros_like([first_var]))
# first_varに依存する
sess.run(second_var.initializer)
tf.summary.FileWriter('./log/', sess.graph)
tb.show_graph(tf.get_default_graph().as_graph_def())
In [ ]: