0.036954641342163086
0.004361152648925781
0.0055522918701171875
Iteration 0 out of 26342
0.032051801681518555
0.001913309097290039
0.023064374923706055
0.033803462982177734
0.003193378448486328
0.005626678466796875
0.032321929931640625
0.005945920944213867
0.005591869354248047
0.0322880744934082
0.0021796226501464844
0.005434751510620117
0.04564714431762695
0.0033674240112304688
0.005579471588134766
0.03286862373352051
0.0074291229248046875
0.005410194396972656
0.03284788131713867
0.005298137664794922
0.005423784255981445
0.032095909118652344
0.00433802604675293
0.005357027053833008
0.03104567527770996
0.002360105514526367
0.005465030670166016
0.03224372863769531
0.0020694732666015625
0.005217075347900391
0.047269582748413086
0.003337860107421875
0.005617618560791016
0.032241106033325195
0.0020384788513183594
0.0050699710845947266
0.03137969970703125
0.0035860538482666016
0.005471706390380859
0.03216409683227539
0.006409406661987305
0.0054531097412109375
0.03360795974731445
0.0034897327423095703
0.005488395690917969
0.031015634536743164
0.002880573272705078
0.005453348159790039
0.048334360122680664
0.005198001861572266
0.0054779052734375
0.032985687255859375
0.004025936126708984
0.0053446292877197266
0.031113624572753906
0.0019183158874511719
0.005191802978515625
0.032048940658569336
0.0015859603881835938
0.005026102066040039
0.031340837478637695
0.0031194686889648438
0.005494832992553711
0.03148508071899414
0.004509925842285156
0.005383968353271484
0.07640480995178223
0.0020749568939208984
0.005436897277832031
0.03253579139709473
0.0015912055969238281
0.006906270980834961
0.03199625015258789
0.003233671188354492
0.0056078433990478516
0.032332420349121094
0.00805521011352539
0.005347728729248047
0.032251596450805664
0.002344369888305664
0.005196094512939453
0.031191110610961914
0.003267526626586914
0.0054225921630859375
0.04635024070739746
0.0028235912322998047
0.00516200065612793
0.031855106353759766
0.002004861831665039
0.00501561164855957
0.03146958351135254
0.005861997604370117
0.005523681640625
0.03212285041809082
0.0032155513763427734
0.005269765853881836
0.031407833099365234
0.0038754940032958984
0.005493879318237305
0.032012224197387695
0.007847309112548828
0.005635261535644531
0.04733633995056152
0.002039194107055664
0.005404949188232422
0.03333759307861328
0.0031044483184814453
0.005450725555419922
0.03160381317138672
0.003842592239379883
0.0053157806396484375
0.030268192291259766
0.001583099365234375
0.0053098201751708984
0.031185626983642578
0.003940105438232422
0.00541377067565918
0.031931161880493164
0.005433082580566406
0.005437612533569336
0.046407222747802734
0.0021860599517822266
0.005168914794921875
0.032234907150268555
0.0017426013946533203
0.005264759063720703
0.030699729919433594
0.001787424087524414
0.004945516586303711
0.03153824806213379
0.0026357173919677734
0.005189418792724609
0.03190875053405762
0.0034432411193847656
0.005613088607788086
0.03202390670776367
0.0021255016326904297
0.0052487850189208984
0.04638075828552246
0.005827665328979492
0.005399227142333984
0.033594608306884766
0.006373167037963867
0.0053746700286865234
0.03412151336669922
0.005888938903808594
0.005391836166381836
0.03206014633178711
0.0067119598388671875
0.005419254302978516
0.032111406326293945
0.005498409271240234
0.005328655242919922
0.0314326286315918
0.0011043548583984375
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-19582dadeab3> in <module>()
47
48 # the order of classes in predict_proba's output matches that in clf.classes_.
---> 49 prob = clf.predict_proba(X_test)
50 new_prob = []
51 for row in prob:
/gpfs/software/x86_64/anaconda/envs/anaconda431-py35/lib/python3.5/site-packages/sklearn/neighbors/classification.py in predict_proba(self, X)
188 X = check_array(X, accept_sparse='csr')
189
--> 190 neigh_dist, neigh_ind = self.kneighbors(X)
191
192 classes_ = self.classes_
/gpfs/software/x86_64/anaconda/envs/anaconda431-py35/lib/python3.5/site-packages/sklearn/neighbors/base.py in kneighbors(self, X, n_neighbors, return_distance)
341 "Expected n_neighbors <= n_samples, "
342 " but n_samples = %d, n_neighbors = %d" %
--> 343 (train_size, n_neighbors)
344 )
345 n_samples, _ = X.shape
ValueError: Expected n_neighbors <= n_samples, but n_samples = 343, n_neighbors = 500