Project Euler: Problem 9

https://projecteuler.net/problem=9

A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,

$$a^2 + b^2 = c^2$$

For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.

There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product abc.


In [1]:
def find_specialtrip():
    for c in range(3,1000):
        for b in range(2, c):
            for a in range(1, b):
                if ( (a **2 + b ** 2 == c ** 2) and (a + b + c == 1000) ):
                    abc = [a, b, c]
                    prod = a * b * c
                    return [abc, prod]

                
print(find_specialtrip())


#raise NotImplementedError()


[[200, 375, 425], 31875000]

In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.