In [46]:
# 导入头文件
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
import matplotlib.pyplot as plt
In [47]:
data = pd.read_csv('data.csv')
np.array(data['y'])
Out[47]:
In [48]:
# 分解数据中的
X = np.array(data[['x1', 'x2']])
y = np.array(data['y'])
In [49]:
plt.scatter(X[:,0],X[:,1],c=y)
Out[49]:
In [50]:
# Logistic Regression Classifier
lg_classifier = LogisticRegression()
lg_classifier.fit(X,y)
Out[50]:
In [59]:
y_p = classifier.predict(X)
In [60]:
plt.scatter(X[:,0],X[:,1],c=y_p)
Out[60]:
In [61]:
Dt_classifier = DecisionTreeClassifier()
Dt_classifier.fit(X, y)
Out[61]:
In [63]:
y_Dp = Dt_classifier.predict(X)
plt.scatter(X[:,0],X[:,1],c=y_Dp)
Out[63]:
In [57]:
svc_classifier = SVC()
svc_classifier.fit(X, y)
Out[57]:
In [64]:
y_sp = svc_classifier.predict(X)
plt.scatter(X[:,0],X[:,1],c=y_sp)
Out[64]:
In [ ]:
svc_classifier1 = SVC(ke)
svc_classifier.fit(X, y)