In [1]:
from __future__ import division
from sympy import *
from IPython.display import display, Math, Latex
from IPython.core.display import display_html
init_session(quiet=True, use_latex='mathjax')
init_printing()
In [2]:
x1,x2,tau,delta = symbols('x1,x2,tau,delta')
L11 = symbols('L11', cls=Function)(x1,x2,tau,delta)
L12 = symbols('L12', cls=Function)(x1,x2,tau,delta)
L21 = symbols('L21', cls=Function)(x1,x2,tau,delta)
L22 = symbols('L22', cls=Function)(x1,x2,tau,delta)
In [3]:
Lstar = Matrix([[L11,L12],[L21,L22]])
L1star = Lstar.det()
deriv1 = L1star.diff(t)
deriv2 = (Lstar.adjugate()*Lstar.diff(t)).trace()
Mstar = Matrix([[L11,L12],[Lstar.det().diff(x1),Lstar.det().diff(x2)]])
deriv1 = Mstar.det().diff(tau)
deriv2 = (Mstar.adjugate()*Mstar.diff(tau)).trace()
simplify(deriv1-deriv2)
Out[3]:
In [7]:
Mstar = Matrix([[0.00112865, 8.76232e-006],[9.57021e-007, 7.42578e-009]])
dMstar_dTau = Matrix([[-0.000245724,-0.00118232],[3.20921e-006, -7.171e-008]])
adjM = Matrix([[7.42578e-009,-9.57021e-007],[-8.76232e-006, 0.00112865]])
(adjM*dMstar_dTau).trace()
print Mstar.adjugate()
print adjM
In [11]:
a,b,c,d = symbols('a,b,c,d')
M = Matrix([[a,b],[c,d]])
display(M)
M.adjugate()
Out[11]:
In [ ]: