Train on 115783 samples, validate on 12865 samples
Epoch 1/20
115783/115783 [==============================] - 3s - loss: 0.4550 - val_loss: 0.4357
Epoch 2/20
115783/115783 [==============================] - 3s - loss: 0.4350 - val_loss: 0.4346
Epoch 3/20
115783/115783 [==============================] - 3s - loss: 0.4344 - val_loss: 0.4343
Epoch 4/20
115783/115783 [==============================] - 3s - loss: 0.4342 - val_loss: 0.4340
Epoch 5/20
115783/115783 [==============================] - 2s - loss: 0.4338 - val_loss: 0.4337
Epoch 6/20
115783/115783 [==============================] - 3s - loss: 0.4334 - val_loss: 0.4332
Epoch 7/20
115783/115783 [==============================] - 2s - loss: 0.4330 - val_loss: 0.4328
Epoch 8/20
115783/115783 [==============================] - 3s - loss: 0.4328 - val_loss: 0.4326
Epoch 9/20
115783/115783 [==============================] - 2s - loss: 0.4326 - val_loss: 0.4323
Epoch 10/20
115783/115783 [==============================] - 3s - loss: 0.4323 - val_loss: 0.4321
Epoch 11/20
115783/115783 [==============================] - 2s - loss: 0.4321 - val_loss: 0.4320
Epoch 12/20
115783/115783 [==============================] - 3s - loss: 0.4321 - val_loss: 0.4320
Epoch 13/20
115783/115783 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4319
Epoch 14/20
115783/115783 [==============================] - 2s - loss: 0.4319 - val_loss: 0.4318
Epoch 15/20
115783/115783 [==============================] - 3s - loss: 0.4318 - val_loss: 0.4317
Epoch 16/20
115783/115783 [==============================] - 2s - loss: 0.4318 - val_loss: 0.4317
Epoch 17/20
115783/115783 [==============================] - 3s - loss: 0.4317 - val_loss: 0.4316
Epoch 18/20
115783/115783 [==============================] - 2s - loss: 0.4316 - val_loss: 0.4315
Epoch 19/20
115783/115783 [==============================] - 3s - loss: 0.4316 - val_loss: 0.4315
Epoch 20/20
115783/115783 [==============================] - 2s - loss: 0.4315 - val_loss: 0.4315
--- 63.10294723510742 seconds ---
Train on 115292 samples, validate on 12811 samples
Epoch 1/20
115292/115292 [==============================] - 3s - loss: 0.4536 - val_loss: 0.4363
Epoch 2/20
115292/115292 [==============================] - 3s - loss: 0.4355 - val_loss: 0.4349
Epoch 3/20
115292/115292 [==============================] - 3s - loss: 0.4346 - val_loss: 0.4343
Epoch 4/20
115292/115292 [==============================] - 3s - loss: 0.4342 - val_loss: 0.4340
Epoch 5/20
115292/115292 [==============================] - 2s - loss: 0.4338 - val_loss: 0.4336
Epoch 6/20
115292/115292 [==============================] - 3s - loss: 0.4335 - val_loss: 0.4333
Epoch 7/20
115292/115292 [==============================] - 2s - loss: 0.4332 - val_loss: 0.4330
Epoch 8/20
115292/115292 [==============================] - 3s - loss: 0.4329 - val_loss: 0.4327
Epoch 9/20
115292/115292 [==============================] - 2s - loss: 0.4326 - val_loss: 0.4324
Epoch 10/20
115292/115292 [==============================] - 3s - loss: 0.4324 - val_loss: 0.4322
Epoch 11/20
115292/115292 [==============================] - 2s - loss: 0.4322 - val_loss: 0.4321
Epoch 12/20
115292/115292 [==============================] - 3s - loss: 0.4321 - val_loss: 0.4319
Epoch 13/20
115292/115292 [==============================] - 3s - loss: 0.4319 - val_loss: 0.4318
Epoch 14/20
115292/115292 [==============================] - 2s - loss: 0.4318 - val_loss: 0.4317
Epoch 15/20
115292/115292 [==============================] - 3s - loss: 0.4317 - val_loss: 0.4316
Epoch 16/20
115292/115292 [==============================] - 2s - loss: 0.4316 - val_loss: 0.4315
Epoch 17/20
115292/115292 [==============================] - 3s - loss: 0.4315 - val_loss: 0.4314
Epoch 18/20
115292/115292 [==============================] - 2s - loss: 0.4314 - val_loss: 0.4313
Epoch 19/20
115292/115292 [==============================] - 3s - loss: 0.4314 - val_loss: 0.4313
Epoch 20/20
115292/115292 [==============================] - 2s - loss: 0.4313 - val_loss: 0.4312
--- 62.52077293395996 seconds ---
Train on 115776 samples, validate on 12864 samples
Epoch 1/20
115776/115776 [==============================] - 3s - loss: 0.4543 - val_loss: 0.4360
Epoch 2/20
115776/115776 [==============================] - 3s - loss: 0.4358 - val_loss: 0.4348
Epoch 3/20
115776/115776 [==============================] - 3s - loss: 0.4350 - val_loss: 0.4343
Epoch 4/20
115776/115776 [==============================] - 3s - loss: 0.4346 - val_loss: 0.4339
Epoch 5/20
115776/115776 [==============================] - 2s - loss: 0.4343 - val_loss: 0.4337
Epoch 6/20
115776/115776 [==============================] - 3s - loss: 0.4341 - val_loss: 0.4334
Epoch 7/20
115776/115776 [==============================] - 2s - loss: 0.4337 - val_loss: 0.4330
Epoch 8/20
115776/115776 [==============================] - 3s - loss: 0.4334 - val_loss: 0.4327
Epoch 9/20
115776/115776 [==============================] - 3s - loss: 0.4331 - val_loss: 0.4324
Epoch 10/20
115776/115776 [==============================] - 2s - loss: 0.4328 - val_loss: 0.4322
Epoch 11/20
115776/115776 [==============================] - 3s - loss: 0.4326 - val_loss: 0.4320
Epoch 12/20
115776/115776 [==============================] - 2s - loss: 0.4325 - val_loss: 0.4319
Epoch 13/20
115776/115776 [==============================] - 3s - loss: 0.4324 - val_loss: 0.4318
Epoch 14/20
115776/115776 [==============================] - 2s - loss: 0.4323 - val_loss: 0.4317
Epoch 15/20
115776/115776 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4316
Epoch 16/20
115776/115776 [==============================] - 2s - loss: 0.4321 - val_loss: 0.4315
Epoch 17/20
115776/115776 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4315
Epoch 18/20
115776/115776 [==============================] - 3s - loss: 0.4319 - val_loss: 0.4314
Epoch 19/20
115776/115776 [==============================] - 3s - loss: 0.4319 - val_loss: 0.4314
Epoch 20/20
115776/115776 [==============================] - 2s - loss: 0.4318 - val_loss: 0.4313
--- 62.73229098320007 seconds ---
Train on 115874 samples, validate on 12875 samples
Epoch 1/20
115874/115874 [==============================] - 3s - loss: 0.4539 - val_loss: 0.4358
Epoch 2/20
115874/115874 [==============================] - 3s - loss: 0.4352 - val_loss: 0.4344
Epoch 3/20
115874/115874 [==============================] - 2s - loss: 0.4345 - val_loss: 0.4340
Epoch 4/20
115874/115874 [==============================] - 3s - loss: 0.4342 - val_loss: 0.4337
Epoch 5/20
115874/115874 [==============================] - 3s - loss: 0.4339 - val_loss: 0.4333
Epoch 6/20
115874/115874 [==============================] - 2s - loss: 0.4335 - val_loss: 0.4330
Epoch 7/20
115874/115874 [==============================] - 3s - loss: 0.4332 - val_loss: 0.4327
Epoch 8/20
115874/115874 [==============================] - 2s - loss: 0.4330 - val_loss: 0.4324
Epoch 9/20
115874/115874 [==============================] - 3s - loss: 0.4327 - val_loss: 0.4323
Epoch 10/20
115874/115874 [==============================] - ETA: 0s - loss: 0.432 - 2s - loss: 0.4326 - val_loss: 0.4321
Epoch 11/20
115874/115874 [==============================] - 3s - loss: 0.4324 - val_loss: 0.4319
Epoch 12/20
115874/115874 [==============================] - 2s - loss: 0.4323 - val_loss: 0.4318
Epoch 13/20
115874/115874 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4317
Epoch 14/20
115874/115874 [==============================] - 2s - loss: 0.4321 - val_loss: 0.4316
Epoch 15/20
115874/115874 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4316
Epoch 16/20
115874/115874 [==============================] - 2s - loss: 0.4319 - val_loss: 0.4315
Epoch 17/20
115874/115874 [==============================] - 3s - loss: 0.4318 - val_loss: 0.4314
Epoch 18/20
115874/115874 [==============================] - 2s - loss: 0.4318 - val_loss: 0.4314
Epoch 19/20
115874/115874 [==============================] - 3s - loss: 0.4317 - val_loss: 0.4313
Epoch 20/20
115874/115874 [==============================] - 3s - loss: 0.4317 - val_loss: 0.4313
--- 62.12800073623657 seconds ---
Train on 115318 samples, validate on 12814 samples
Epoch 1/20
115318/115318 [==============================] - 3s - loss: 0.4535 - val_loss: 0.4369
Epoch 2/20
115318/115318 [==============================] - 3s - loss: 0.4352 - val_loss: 0.4351
Epoch 3/20
115318/115318 [==============================] - 3s - loss: 0.4341 - val_loss: 0.4342
Epoch 4/20
115318/115318 [==============================] - 2s - loss: 0.4337 - val_loss: 0.4338
Epoch 5/20
115318/115318 [==============================] - 3s - loss: 0.4334 - val_loss: 0.4336
Epoch 6/20
115318/115318 [==============================] - 2s - loss: 0.4332 - val_loss: 0.4333
Epoch 7/20
115318/115318 [==============================] - 3s - loss: 0.4328 - val_loss: 0.4329
Epoch 8/20
115318/115318 [==============================] - 2s - loss: 0.4324 - val_loss: 0.4326
Epoch 9/20
115318/115318 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4324
Epoch 10/20
115318/115318 [==============================] - 2s - loss: 0.4320 - val_loss: 0.4322
Epoch 11/20
115318/115318 [==============================] - 3s - loss: 0.4318 - val_loss: 0.4321
Epoch 12/20
115318/115318 [==============================] - 2s - loss: 0.4317 - val_loss: 0.4319
Epoch 13/20
115318/115318 [==============================] - 3s - loss: 0.4315 - val_loss: 0.4318
Epoch 14/20
115318/115318 [==============================] - 2s - loss: 0.4314 - val_loss: 0.4317
Epoch 15/20
115318/115318 [==============================] - 3s - loss: 0.4313 - val_loss: 0.4316
Epoch 16/20
115318/115318 [==============================] - 2s - loss: 0.4313 - val_loss: 0.4316
Epoch 17/20
115318/115318 [==============================] - 3s - loss: 0.4312 - val_loss: 0.4315
Epoch 18/20
115318/115318 [==============================] - 3s - loss: 0.4311 - val_loss: 0.4314
Epoch 19/20
115318/115318 [==============================] - 2s - loss: 0.4311 - val_loss: 0.4314
Epoch 20/20
115318/115318 [==============================] - 3s - loss: 0.4310 - val_loss: 0.4313
--- 62.43962574005127 seconds ---
Train on 115324 samples, validate on 12814 samples
Epoch 1/20
115324/115324 [==============================] - 3s - loss: 0.4525 - val_loss: 0.4366
Epoch 2/20
115324/115324 [==============================] - 3s - loss: 0.4350 - val_loss: 0.4353
Epoch 3/20
115324/115324 [==============================] - 2s - loss: 0.4342 - val_loss: 0.4344
Epoch 4/20
115324/115324 [==============================] - 3s - loss: 0.4338 - val_loss: 0.4340
Epoch 5/20
115324/115324 [==============================] - 3s - loss: 0.4335 - val_loss: 0.4337
Epoch 6/20
115324/115324 [==============================] - 3s - loss: 0.4332 - val_loss: 0.4334
Epoch 7/20
115324/115324 [==============================] - 3s - loss: 0.4329 - val_loss: 0.4330
Epoch 8/20
115324/115324 [==============================] - 2s - loss: 0.4326 - val_loss: 0.4327
Epoch 9/20
115324/115324 [==============================] - 3s - loss: 0.4323 - val_loss: 0.4325
Epoch 10/20
115324/115324 [==============================] - 2s - loss: 0.4321 - val_loss: 0.4323
Epoch 11/20
115324/115324 [==============================] - 3s - loss: 0.4319 - val_loss: 0.4321
Epoch 12/20
115324/115324 [==============================] - 2s - loss: 0.4317 - val_loss: 0.4320
Epoch 13/20
115324/115324 [==============================] - 3s - loss: 0.4316 - val_loss: 0.4319
Epoch 14/20
115324/115324 [==============================] - 2s - loss: 0.4315 - val_loss: 0.4317
Epoch 15/20
115324/115324 [==============================] - 3s - loss: 0.4313 - val_loss: 0.4316
Epoch 16/20
115324/115324 [==============================] - 2s - loss: 0.4312 - val_loss: 0.4316
Epoch 17/20
115324/115324 [==============================] - 3s - loss: 0.4312 - val_loss: 0.4315
Epoch 18/20
115324/115324 [==============================] - 2s - loss: 0.4311 - val_loss: 0.4314
Epoch 19/20
115324/115324 [==============================] - 3s - loss: 0.4310 - val_loss: 0.4314
Epoch 20/20
115324/115324 [==============================] - 3s - loss: 0.4310 - val_loss: 0.4314
--- 62.2017035484314 seconds ---
Train on 115416 samples, validate on 12825 samples
Epoch 1/20
115416/115416 [==============================] - 3s - loss: 0.4534 - val_loss: 0.4363
Epoch 2/20
115416/115416 [==============================] - 3s - loss: 0.4355 - val_loss: 0.4351
Epoch 3/20
115416/115416 [==============================] - 3s - loss: 0.4348 - val_loss: 0.4343
Epoch 4/20
115416/115416 [==============================] - 2s - loss: 0.4345 - val_loss: 0.4341
Epoch 5/20
115416/115416 [==============================] - 3s - loss: 0.4343 - val_loss: 0.4338
Epoch 6/20
115416/115416 [==============================] - 2s - loss: 0.4339 - val_loss: 0.4334
Epoch 7/20
115416/115416 [==============================] - 3s - loss: 0.4336 - val_loss: 0.4331
Epoch 8/20
115416/115416 [==============================] - 2s - loss: 0.4332 - val_loss: 0.4327
Epoch 9/20
115416/115416 [==============================] - 3s - loss: 0.4330 - val_loss: 0.4325
Epoch 10/20
115416/115416 [==============================] - 3s - loss: 0.4328 - val_loss: 0.4323
Epoch 11/20
115416/115416 [==============================] - 3s - loss: 0.4326 - val_loss: 0.4322
Epoch 12/20
115416/115416 [==============================] - 3s - loss: 0.4325 - val_loss: 0.4320
Epoch 13/20
115416/115416 [==============================] - 3s - loss: 0.4323 - val_loss: 0.4318
Epoch 14/20
115416/115416 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4317
Epoch 15/20
115416/115416 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4316
Epoch 16/20
115416/115416 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4315
Epoch 17/20
115416/115416 [==============================] - 2s - loss: 0.4319 - val_loss: 0.4314
Epoch 18/20
115416/115416 [==============================] - 3s - loss: 0.4318 - val_loss: 0.4314
Epoch 19/20
115416/115416 [==============================] - 2s - loss: 0.4317 - val_loss: 0.4313
Epoch 20/20
115416/115416 [==============================] - 3s - loss: 0.4317 - val_loss: 0.4313
--- 62.60910415649414 seconds ---
Train on 115781 samples, validate on 12865 samples
Epoch 1/20
115781/115781 [==============================] - 3s - loss: 0.4521 - val_loss: 0.4366
Epoch 2/20
115781/115781 [==============================] - 3s - loss: 0.4359 - val_loss: 0.4355
Epoch 3/20
115781/115781 [==============================] - 3s - loss: 0.4351 - val_loss: 0.4347
Epoch 4/20
115781/115781 [==============================] - 2s - loss: 0.4347 - val_loss: 0.4344
Epoch 5/20
115781/115781 [==============================] - 3s - loss: 0.4345 - val_loss: 0.4341
Epoch 6/20
115781/115781 [==============================] - 2s - loss: 0.4341 - val_loss: 0.4336
Epoch 7/20
115781/115781 [==============================] - 3s - loss: 0.4337 - val_loss: 0.4333
Epoch 8/20
115781/115781 [==============================] - 2s - loss: 0.4333 - val_loss: 0.4330
Epoch 9/20
115781/115781 [==============================] - 3s - loss: 0.4331 - val_loss: 0.4327
Epoch 10/20
115781/115781 [==============================] - 3s - loss: 0.4329 - val_loss: 0.4325
Epoch 11/20
115781/115781 [==============================] - 3s - loss: 0.4327 - val_loss: 0.4324
Epoch 12/20
115781/115781 [==============================] - 3s - loss: 0.4326 - val_loss: 0.4322
Epoch 13/20
115781/115781 [==============================] - 2s - loss: 0.4324 - val_loss: 0.4321
Epoch 14/20
115781/115781 [==============================] - 3s - loss: 0.4323 - val_loss: 0.4320
Epoch 15/20
115781/115781 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4319
Epoch 16/20
115781/115781 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4318
Epoch 17/20
115781/115781 [==============================] - 2s - loss: 0.4321 - val_loss: 0.4317
Epoch 18/20
115781/115781 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4316
Epoch 19/20
115781/115781 [==============================] - 2s - loss: 0.4320 - val_loss: 0.4315
Epoch 20/20
115781/115781 [==============================] - 3s - loss: 0.4320 - val_loss: 0.4315
--- 63.159154176712036 seconds ---
Train on 115670 samples, validate on 12853 samples
Epoch 1/20
115670/115670 [==============================] - 3s - loss: 0.4546 - val_loss: 0.4373
Epoch 2/20
115670/115670 [==============================] - 3s - loss: 0.4359 - val_loss: 0.4348
Epoch 3/20
115670/115670 [==============================] - 3s - loss: 0.4351 - val_loss: 0.4328
Epoch 4/20
115670/115670 [==============================] - 3s - loss: 0.4348 - val_loss: 0.4323
Epoch 5/20
115670/115670 [==============================] - 2s - loss: 0.4345 - val_loss: 0.4317
Epoch 6/20
115670/115670 [==============================] - 3s - loss: 0.4342 - val_loss: 0.4313
Epoch 7/20
115670/115670 [==============================] - 2s - loss: 0.4339 - val_loss: 0.4309
Epoch 8/20
115670/115670 [==============================] - 3s - loss: 0.4335 - val_loss: 0.4306
Epoch 9/20
115670/115670 [==============================] - 3s - loss: 0.4333 - val_loss: 0.4304
Epoch 10/20
115670/115670 [==============================] - 3s - loss: 0.4331 - val_loss: 0.4301
Epoch 11/20
115670/115670 [==============================] - 2s - loss: 0.4329 - val_loss: 0.4300
Epoch 12/20
115670/115670 [==============================] - 3s - loss: 0.4328 - val_loss: 0.4298
Epoch 13/20
115670/115670 [==============================] - 2s - loss: 0.4327 - val_loss: 0.4297
Epoch 14/20
115670/115670 [==============================] - 3s - loss: 0.4326 - val_loss: 0.4296
Epoch 15/20
115670/115670 [==============================] - 3s - loss: 0.4325 - val_loss: 0.4295
Epoch 16/20
115670/115670 [==============================] - 3s - loss: 0.4324 - val_loss: 0.4294
Epoch 17/20
115670/115670 [==============================] - 3s - loss: 0.4323 - val_loss: 0.4294
Epoch 18/20
115670/115670 [==============================] - 3s - loss: 0.4323 - val_loss: 0.4293
Epoch 19/20
115670/115670 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4292
Epoch 20/20
115670/115670 [==============================] - 3s - loss: 0.4322 - val_loss: 0.4292
--- 63.109647274017334 seconds ---