In [1]:
%matplotlib inline
from vnpy.trader.app.ctaStrategy.ctaBacktesting import BacktestingEngine, OptimizationSetting, MINUTE_DB_NAME
from vnpy.trader.app.ctaStrategy.strategy.strategyAtrRsi import AtrRsiStrategy
#from vnpy.trader.app.ctaStrategy.strategy.strategyMultiTimeframe import MultiTimeframeStrategy
from vnpy.trader.app.ctaStrategy.strategy.strategyMultiSignal import MultiSignalStrategy
In [2]:
# 创建回测引擎对象
engine = BacktestingEngine()
In [3]:
# 设置回测使用的数据
engine.setBacktestingMode(engine.BAR_MODE) # 设置引擎的回测模式为K线
engine.setDatabase(MINUTE_DB_NAME, 'IF0000') # 设置使用的历史数据库
engine.setStartDate('20130101') # 设置回测用的数据起始日期
In [4]:
# 配置回测引擎参数
engine.setSlippage(0.2) # 设置滑点为股指1跳
engine.setRate(0.3/10000) # 设置手续费万0.3
engine.setSize(300) # 设置股指合约大小
engine.setPriceTick(0.2) # 设置股指最小价格变动
engine.setCapital(1000000) # 设置回测本金
In [5]:
# 在引擎中创建策略对象
d = {'atrLength': 11} # 策略参数配置
engine.initStrategy(AtrRsiStrategy, d) # 创建策略对象
#ngine.initStrategy(MultiTimeframeStrategy, d)
#engine.initStrategy(MultiSignalStrategy, {})
In [6]:
# 运行回测
engine.runBacktesting() # 运行回测
In [7]:
# 显示逐日回测结果
engine.showDailyResult()
In [ ]:
# 显示逐笔回测结果
engine.showBacktestingResult()
In [ ]:
# 显示前10条成交记录
for i in range(10):
d = engine.tradeDict[str(i+1)].__dict__
print 'TradeID: %s, Time: %s, Direction: %s, Price: %s, Volume: %s' %(d['tradeID'], d['dt'], d['direction'], d['price'], d['volume'])
In [ ]:
# 优化配置
setting = OptimizationSetting() # 新建一个优化任务设置对象
setting.setOptimizeTarget('totalNetPnl') # 设置优化排序的目标是策略净盈利
setting.addParameter('atrLength', 12, 16, 2) # 增加第一个优化参数atrLength,起始12,结束20,步进2
#setting.addParameter('atrMa', 20, 30, 5) # 增加第二个优化参数atrMa,起始20,结束30,步进5
#setting.addParameter('rsiLength', 5) # 增加一个固定数值的参数
# 执行多进程优化
import time
start = time.time()
#resultList = engine.runParallelOptimization(AtrRsiStrategy, setting)
resultList = engine.runOptimization(AtrRsiStrategy, setting)
print u'耗时:%s' %(time.time()-start)
In [ ]:
# 显示优化的所有统计数据
for result in resultList:
print '-' * 30
print u'参数:%s,目标:%s' %(result[0], result[1])
print u'统计数据:'
for k, v in result[2].items():
print u'%s:%s' %(k, v)
In [ ]: