In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
In [43]:
df = pd.read_csv('people-example.csv')
In [44]:
df
Out[44]:
In [45]:
# Son satirlara bak
df.tail()
Out[45]:
In [46]:
print(df)
In [9]:
type(df)
Out[9]:
In [10]:
df.fillna('Missing')
Out[10]:
In [49]:
df = df.fillna('Missing')
In [12]:
df
Out[12]:
In [13]:
df.dtypes
Out[13]:
In [14]:
df[:3]
Out[14]:
In [17]:
df[:5]
Out[17]:
In [23]:
ages = df[['age']]
In [24]:
type(ages)
Out[24]:
In [25]:
ages.max()
Out[25]:
In [26]:
ages.mean()
Out[26]:
In [27]:
ages.median()
Out[27]:
In [31]:
ages.hist()
Out[31]:
In [32]:
ages*ages
Out[32]:
In [33]:
df['Country']
Out[33]:
In [34]:
def change_country(ulke):
if ulke == 'USA':
return 'United States'
return ulke
In [39]:
change_country('USA')
Out[39]:
In [38]:
change_country('Türkiye')
Out[38]:
In [47]:
df['Country'] = df['Country'].apply(change_country)
In [50]:
df
Out[50]:
In [51]:
df['Full Name'] = df['First Name'] + ' ' + df['Last Name']
In [52]:
df
Out[52]:
In [55]:
df
Out[55]:
In [56]:
backup = df
In [57]:
df = df.drop('age', 1)
In [58]:
df
Out[58]:
In [ ]: