In [1]:
import pandas as pd
In [2]:
import numpy as np
In [4]:
from pandas import DataFrame, Series
In [6]:
df = DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]],
index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
In [7]:
df
Out[7]:
In [8]:
df.sum()
Out[8]:
In [9]:
df.sum(axis=1)
Out[9]:
In [10]:
df.mean(axis=1, skipna=False)
Out[10]:
In [11]:
df.idxmax()
Out[11]:
In [12]:
df.cumsum()
Out[12]:
In [13]:
df.describe()
Out[13]:
In [17]:
obj = Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])
In [18]:
uniques = obj.unique()
In [19]:
uniques
Out[19]:
In [20]:
obj.value_counts()
Out[20]:
In [21]:
pd.value_counts(obj.values, sort=False)
Out[21]:
In [22]:
mask = obj.isin(['b', 'c'])
In [23]:
mask
Out[23]:
In [24]:
obj[mask]
Out[24]:
In [25]:
data = DataFrame({'Qu1': [1, 3, 4, 3, 4],
'Qu2': [2, 3, 1, 2, 3],
'Qu3': [1, 5, 2, 4, 4]})
In [26]:
data
Out[26]:
In [27]:
result = data.apply(pd.value_counts).fillna(0)
In [28]:
result
Out[28]:
In [ ]: