In [11]:
#importing scikit-learn datasets and svm packages
import pandas
import numpy as np
from pandas.tools.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
#reading Zoo Dataset from csv file
zoo = r'C:\Users\priyu\Machine-Learning\zoo-animal-classification\zoo.csv'
training_set = pandas.read_csv(zoo,index_col = False)
zoo_data_df = training_set[['hair','feathers','eggs','milk','airborne','aquatic','predator','toothed','backbone','breathes','venomous','fins','legs','tail','domestic','catsize']]
zoo_target_df = training_set[['class_type']]
zoo_target = zoo_target_df.values
zoo_data = zoo_data_df.values
In [12]:
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = train_test_split(zoo_data, zoo_target, test_size=validation_size, random_state=seed)
In [13]:
y = Y_train.ravel()
Y_train = np.array(y).astype(int)
In [14]:
# Test options and evaluation metric
num_folds = 10
num_instances = len(X_train)
seed = 7
scoring = 'accuracy'
In [26]:
model = SVC(C=5.0,class_weight='balanced',verbose=True)
results = []
names = []
kfold = cross_validation.KFold(n=num_instances, n_folds=num_folds, random_state=seed)
cv_results = cross_validation.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
#names.append(name)
msg = "%s: %f (%f)" % ('SVM', cv_results.mean(), cv_results.std())
print(msg)
print(cv_results)
In [19]:
model.fit(X_train,Y_train)
Out[19]:
In [20]:
model.decision_function(X_train)
Out[20]:
In [21]:
model.get_params()
Out[21]:
In [24]:
model.predict(X_train)
Out[24]:
In [25]:
model.score(X_train,Y_train)
Out[25]: