In [1]:
import pandas
import numpy as np
from pandas.tools.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import cross_validation
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
zoo = r'C:\Users\priyu\Machine-Learning\zoo-animal-classification\zoo.csv'
#zoo_class = r'C:\Users\priyu\Machine-Learning\zoo-animal-classification\class.csv'
training_set = pandas.read_csv(zoo,index_col = False)
#zoo_class_set = pandas.read_csv(zoo_class, index_col = False)
zoo_data_df = training_set[['hair','feathers','eggs','milk','airborne','aquatic','predator','toothed','backbone','breathes','venomous','fins','legs','tail','domestic','catsize']]
zoo_target_df = training_set[['class_type']]
zoo_target = zoo_target_df.values
zoo_data = zoo_data_df.values
In [9]:
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = cross_validation.train_test_split(zoo_data, zoo_target, test_size=validation_size, random_state=seed)
In [10]:
y = Y_train.ravel()
Y_train = np.array(y).astype(int)
In [41]:
# Test options and evaluation metric
num_folds = 10
num_instances = len(X_train)
seed = 7
scoring = 'accuracy'
In [60]:
model = LogisticRegression(class_weight='balanced')
results = []
names = []
kfold = cross_validation.KFold(n=num_instances, n_folds=num_folds, random_state=seed)
cv_results = cross_validation.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
#names.append(name)
msg = "%s: %f (%f)" % ('Logistic Regression', cv_results.mean(), cv_results.std())
print(msg)
print(cv_results)
#print(cv_results)
#print(cross_validation.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring))
In [13]:
# fit - fit the model according to the given training data
# m.fit(iris.data,iris.target)
In [14]:
# decision_function - to predict confidence scores (signed distance of that sample to the hyperplane) for examples.
# m.decision_function(iris.data)
In [50]:
#LogisticRegression().get_params()
Out[50]:
In [16]:
# fit_transform
# m.fit_transform(iris.data,iris.target)
In [17]:
# predict - in the output below, 0-Setosa, 1-Versicolour, 2-Virginica
# m.predict(iris.data)
In [18]:
# predict_proba
# m.predict_proba(iris.data)
In [19]:
# m.predict_log_proba(iris.data)
In [20]:
# m.score(iris.data,iris.target)
In [21]:
# m.sparsify()