In [1]:
#importing scikit-learn datasets package and the Logistic Regression package
from sklearn import datasets
from sklearn.linear_model import LogisticRegression

#reading the iris dataset from the datasets package
iris = datasets.load_iris()
iris.data.shape,iris.target.shape

#implementing the methods of Logistic Regression 
m=LogisticRegression()

#printing the labels, feature names and their description
print(iris.target,iris.target_names,iris.feature_names,iris.DESCR)


[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2] ['setosa' 'versicolor' 'virginica'] ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] Iris Plants Database
====================

Notes
-----
Data Set Characteristics:
    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica
    :Summary Statistics:

    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)
    ============== ==== ==== ======= ===== ====================

    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988

This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

References
----------
   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...


In [2]:
#viewing the dataset
print(iris.data)


[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]
 [ 4.7  3.2  1.3  0.2]
 [ 4.6  3.1  1.5  0.2]
 [ 5.   3.6  1.4  0.2]
 [ 5.4  3.9  1.7  0.4]
 [ 4.6  3.4  1.4  0.3]
 [ 5.   3.4  1.5  0.2]
 [ 4.4  2.9  1.4  0.2]
 [ 4.9  3.1  1.5  0.1]
 [ 5.4  3.7  1.5  0.2]
 [ 4.8  3.4  1.6  0.2]
 [ 4.8  3.   1.4  0.1]
 [ 4.3  3.   1.1  0.1]
 [ 5.8  4.   1.2  0.2]
 [ 5.7  4.4  1.5  0.4]
 [ 5.4  3.9  1.3  0.4]
 [ 5.1  3.5  1.4  0.3]
 [ 5.7  3.8  1.7  0.3]
 [ 5.1  3.8  1.5  0.3]
 [ 5.4  3.4  1.7  0.2]
 [ 5.1  3.7  1.5  0.4]
 [ 4.6  3.6  1.   0.2]
 [ 5.1  3.3  1.7  0.5]
 [ 4.8  3.4  1.9  0.2]
 [ 5.   3.   1.6  0.2]
 [ 5.   3.4  1.6  0.4]
 [ 5.2  3.5  1.5  0.2]
 [ 5.2  3.4  1.4  0.2]
 [ 4.7  3.2  1.6  0.2]
 [ 4.8  3.1  1.6  0.2]
 [ 5.4  3.4  1.5  0.4]
 [ 5.2  4.1  1.5  0.1]
 [ 5.5  4.2  1.4  0.2]
 [ 4.9  3.1  1.5  0.1]
 [ 5.   3.2  1.2  0.2]
 [ 5.5  3.5  1.3  0.2]
 [ 4.9  3.1  1.5  0.1]
 [ 4.4  3.   1.3  0.2]
 [ 5.1  3.4  1.5  0.2]
 [ 5.   3.5  1.3  0.3]
 [ 4.5  2.3  1.3  0.3]
 [ 4.4  3.2  1.3  0.2]
 [ 5.   3.5  1.6  0.6]
 [ 5.1  3.8  1.9  0.4]
 [ 4.8  3.   1.4  0.3]
 [ 5.1  3.8  1.6  0.2]
 [ 4.6  3.2  1.4  0.2]
 [ 5.3  3.7  1.5  0.2]
 [ 5.   3.3  1.4  0.2]
 [ 7.   3.2  4.7  1.4]
 [ 6.4  3.2  4.5  1.5]
 [ 6.9  3.1  4.9  1.5]
 [ 5.5  2.3  4.   1.3]
 [ 6.5  2.8  4.6  1.5]
 [ 5.7  2.8  4.5  1.3]
 [ 6.3  3.3  4.7  1.6]
 [ 4.9  2.4  3.3  1. ]
 [ 6.6  2.9  4.6  1.3]
 [ 5.2  2.7  3.9  1.4]
 [ 5.   2.   3.5  1. ]
 [ 5.9  3.   4.2  1.5]
 [ 6.   2.2  4.   1. ]
 [ 6.1  2.9  4.7  1.4]
 [ 5.6  2.9  3.6  1.3]
 [ 6.7  3.1  4.4  1.4]
 [ 5.6  3.   4.5  1.5]
 [ 5.8  2.7  4.1  1. ]
 [ 6.2  2.2  4.5  1.5]
 [ 5.6  2.5  3.9  1.1]
 [ 5.9  3.2  4.8  1.8]
 [ 6.1  2.8  4.   1.3]
 [ 6.3  2.5  4.9  1.5]
 [ 6.1  2.8  4.7  1.2]
 [ 6.4  2.9  4.3  1.3]
 [ 6.6  3.   4.4  1.4]
 [ 6.8  2.8  4.8  1.4]
 [ 6.7  3.   5.   1.7]
 [ 6.   2.9  4.5  1.5]
 [ 5.7  2.6  3.5  1. ]
 [ 5.5  2.4  3.8  1.1]
 [ 5.5  2.4  3.7  1. ]
 [ 5.8  2.7  3.9  1.2]
 [ 6.   2.7  5.1  1.6]
 [ 5.4  3.   4.5  1.5]
 [ 6.   3.4  4.5  1.6]
 [ 6.7  3.1  4.7  1.5]
 [ 6.3  2.3  4.4  1.3]
 [ 5.6  3.   4.1  1.3]
 [ 5.5  2.5  4.   1.3]
 [ 5.5  2.6  4.4  1.2]
 [ 6.1  3.   4.6  1.4]
 [ 5.8  2.6  4.   1.2]
 [ 5.   2.3  3.3  1. ]
 [ 5.6  2.7  4.2  1.3]
 [ 5.7  3.   4.2  1.2]
 [ 5.7  2.9  4.2  1.3]
 [ 6.2  2.9  4.3  1.3]
 [ 5.1  2.5  3.   1.1]
 [ 5.7  2.8  4.1  1.3]
 [ 6.3  3.3  6.   2.5]
 [ 5.8  2.7  5.1  1.9]
 [ 7.1  3.   5.9  2.1]
 [ 6.3  2.9  5.6  1.8]
 [ 6.5  3.   5.8  2.2]
 [ 7.6  3.   6.6  2.1]
 [ 4.9  2.5  4.5  1.7]
 [ 7.3  2.9  6.3  1.8]
 [ 6.7  2.5  5.8  1.8]
 [ 7.2  3.6  6.1  2.5]
 [ 6.5  3.2  5.1  2. ]
 [ 6.4  2.7  5.3  1.9]
 [ 6.8  3.   5.5  2.1]
 [ 5.7  2.5  5.   2. ]
 [ 5.8  2.8  5.1  2.4]
 [ 6.4  3.2  5.3  2.3]
 [ 6.5  3.   5.5  1.8]
 [ 7.7  3.8  6.7  2.2]
 [ 7.7  2.6  6.9  2.3]
 [ 6.   2.2  5.   1.5]
 [ 6.9  3.2  5.7  2.3]
 [ 5.6  2.8  4.9  2. ]
 [ 7.7  2.8  6.7  2. ]
 [ 6.3  2.7  4.9  1.8]
 [ 6.7  3.3  5.7  2.1]
 [ 7.2  3.2  6.   1.8]
 [ 6.2  2.8  4.8  1.8]
 [ 6.1  3.   4.9  1.8]
 [ 6.4  2.8  5.6  2.1]
 [ 7.2  3.   5.8  1.6]
 [ 7.4  2.8  6.1  1.9]
 [ 7.9  3.8  6.4  2. ]
 [ 6.4  2.8  5.6  2.2]
 [ 6.3  2.8  5.1  1.5]
 [ 6.1  2.6  5.6  1.4]
 [ 7.7  3.   6.1  2.3]
 [ 6.3  3.4  5.6  2.4]
 [ 6.4  3.1  5.5  1.8]
 [ 6.   3.   4.8  1.8]
 [ 6.9  3.1  5.4  2.1]
 [ 6.7  3.1  5.6  2.4]
 [ 6.9  3.1  5.1  2.3]
 [ 5.8  2.7  5.1  1.9]
 [ 6.8  3.2  5.9  2.3]
 [ 6.7  3.3  5.7  2.5]
 [ 6.7  3.   5.2  2.3]
 [ 6.3  2.5  5.   1.9]
 [ 6.5  3.   5.2  2. ]
 [ 6.2  3.4  5.4  2.3]
 [ 5.9  3.   5.1  1.8]]

In [3]:
#viewing the dataset
print(iris.target)


[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

In [4]:
#fit - fit the model according to the given training data
m.fit(iris.data,iris.target)


Out[4]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

In [5]:
#decision_function - to predict confidence scores (signed distance of that sample to the hyperplane) for examples.
m.decision_function(iris.data)


Out[5]:
array([[  4.12377083e+00,  -1.86101702e+00,  -1.13225953e+01],
       [  3.31012447e+00,  -1.14392836e+00,  -1.02139561e+01],
       [  3.74560040e+00,  -1.60518870e+00,  -1.04264019e+01],
       [  3.10554360e+00,  -1.37123782e+00,  -9.60802820e+00],
       [  4.22840174e+00,  -2.06276430e+00,  -1.13052696e+01],
       [  3.94832492e+00,  -2.48016878e+00,  -1.11961922e+01],
       [  3.66723742e+00,  -2.04780738e+00,  -1.00598677e+01],
       [  3.70992814e+00,  -1.68483190e+00,  -1.07513188e+01],
       [  2.95650057e+00,  -1.19216488e+00,  -9.20676667e+00],
       [  3.33294961e+00,  -1.10769207e+00,  -1.03758240e+01],
       [  4.31431269e+00,  -1.99842598e+00,  -1.18946093e+01],
       [  3.40071636e+00,  -1.71039408e+00,  -1.01627166e+01],
       [  3.37153515e+00,  -1.04703849e+00,  -1.02987418e+01],
       [  3.84268334e+00,  -1.42865562e+00,  -1.01862707e+01],
       [  5.59733959e+00,  -2.48531735e+00,  -1.37791914e+01],
       [  5.25589834e+00,  -3.27112499e+00,  -1.29697783e+01],
       [  4.85318139e+00,  -2.71123183e+00,  -1.21845809e+01],
       [  4.02086132e+00,  -1.99957086e+00,  -1.10670571e+01],
       [  4.02960118e+00,  -2.05653971e+00,  -1.18105612e+01],
       [  4.23303642e+00,  -2.42205505e+00,  -1.12802404e+01],
       [  3.42349524e+00,  -1.40264450e+00,  -1.09401345e+01],
       [  3.98399717e+00,  -2.40052557e+00,  -1.08712754e+01],
       [  4.96726288e+00,  -2.46048323e+00,  -1.16106482e+01],
       [  2.84414047e+00,  -1.78321462e+00,  -9.50783547e+00],
       [  2.72207401e+00,  -1.53709679e+00,  -9.42142506e+00],
       [  2.89919507e+00,  -9.86732865e-01,  -9.89051426e+00],
       [  3.27789501e+00,  -1.90417383e+00,  -9.99314517e+00],
       [  3.93905555e+00,  -1.76158728e+00,  -1.12462506e+01],
       [  4.01913993e+00,  -1.65926973e+00,  -1.13399210e+01],
       [  3.06695805e+00,  -1.43189141e+00,  -9.68511038e+00],
       [  2.96232714e+00,  -1.23014412e+00,  -9.70243606e+00],
       [  3.67010446e+00,  -1.79528371e+00,  -1.09232524e+01],
       [  4.91874349e+00,  -2.58353335e+00,  -1.24223498e+01],
       [  5.31267434e+00,  -2.81494437e+00,  -1.30795932e+01],
       [  3.33294961e+00,  -1.10769207e+00,  -1.03758240e+01],
       [  4.09631102e+00,  -1.53796255e+00,  -1.11857566e+01],
       [  4.51598028e+00,  -1.75212690e+00,  -1.22527025e+01],
       [  3.33294961e+00,  -1.10769207e+00,  -1.03758240e+01],
       [  3.32884443e+00,  -1.41001397e+00,  -9.60729067e+00],
       [  3.75142698e+00,  -1.64316793e+00,  -1.09220713e+01],
       [  4.20557661e+00,  -2.09900059e+00,  -1.11434017e+01],
       [  2.24452558e+00,  -3.86320610e-01,  -8.44851713e+00],
       [  3.62110391e+00,  -1.73018060e+00,  -9.91414434e+00],
       [  3.21820573e+00,  -2.34136483e+00,  -9.63549558e+00],
       [  3.22527044e+00,  -2.32954584e+00,  -1.00363135e+01],
       [  3.16571613e+00,  -1.32414617e+00,  -9.78766535e+00],
       [  4.10973182e+00,  -2.22573544e+00,  -1.12886814e+01],
       [  3.47788745e+00,  -1.58908690e+00,  -1.00085522e+01],
       [  4.27281386e+00,  -2.04008995e+00,  -1.17238568e+01],
       [  3.79001252e+00,  -1.58251435e+00,  -1.08449891e+01],
       [ -4.22612056e+00,  -3.45527597e-01,  -2.88594749e+00],
       [ -4.12559483e+00,  -8.49596777e-01,  -2.10008852e+00],
       [ -4.96908688e+00,  -2.50130564e-01,  -1.81203559e+00],
       [ -4.47736237e+00,   2.04456245e-01,  -9.29036636e-01],
       [ -4.89482907e+00,  -1.09833771e-01,  -1.41003653e+00],
       [ -4.79478660e+00,  -2.23803597e-01,  -8.02189996e-01],
       [ -4.57630167e+00,  -1.07436638e+00,  -1.33303029e+00],
       [ -2.68799827e+00,  -1.94309697e-01,  -2.55424319e+00],
       [ -4.50138148e+00,   4.88545647e-02,  -2.24529230e+00],
       [ -3.89403531e+00,  -7.57188541e-01,  -1.02204538e+00],
       [ -3.68344663e+00,   6.03219072e-01,  -1.61709403e+00],
       [ -3.94670612e+00,  -9.11047271e-01,  -1.68076378e+00],
       [ -4.10726942e+00,   9.88520934e-01,  -2.39598701e+00],
       [ -5.03799927e+00,  -2.40253358e-01,  -8.88894345e-01],
       [ -2.65422863e+00,  -9.45442750e-01,  -3.00873883e+00],
       [ -3.81810445e+00,  -4.83733472e-01,  -2.96155461e+00],
       [ -4.74984497e+00,  -8.62741888e-01,  -4.27214727e-01],
       [ -3.68583250e+00,   1.62542168e-01,  -2.57451898e+00],
       [ -5.66988989e+00,   6.67908472e-01,  -2.24315147e-01],
       [ -3.71157092e+00,   1.45295499e-01,  -2.16481641e+00],
       [ -5.32045988e+00,  -1.30028086e+00,   2.61580197e-01],
       [ -3.49772068e+00,  -3.45976537e-01,  -2.72068590e+00],
       [ -6.09485831e+00,   4.60385536e-01,   1.33040508e-01],
       [ -4.97830999e+00,   1.96937646e-01,  -1.24654393e+00],
       [ -3.90573680e+00,  -2.07770661e-01,  -2.64507877e+00],
       [ -4.00573302e+00,  -3.65314122e-01,  -2.63737526e+00],
       [ -5.11985130e+00,   2.69243503e-01,  -1.68363795e+00],
       [ -5.63024742e+00,  -3.92717105e-01,  -5.58930133e-01],
       [ -4.72997938e+00,  -5.36002695e-01,  -9.56797954e-01],
       [ -2.51617637e+00,  -6.56330597e-02,  -3.73292264e+00],
       [ -3.67298538e+00,   2.05949086e-01,  -2.08773423e+00],
       [ -3.34386175e+00,   2.86737166e-01,  -2.59036961e+00],
       [ -3.43922329e+00,  -2.30097044e-01,  -2.55763690e+00],
       [ -6.48243308e+00,  -7.79532384e-03,   1.08817693e+00],
       [ -4.83284264e+00,  -9.46069825e-01,  -8.57096957e-02],
       [ -4.10224020e+00,  -1.47497313e+00,  -1.46839391e+00],
       [ -4.59965631e+00,  -4.48990027e-01,  -1.96472489e+00],
       [ -5.05022818e+00,   7.68831044e-01,  -1.30666809e+00],
       [ -3.63916948e+00,  -8.16697254e-01,  -1.92667982e+00],
       [ -4.18510289e+00,  -1.15710393e-01,  -1.23589030e+00],
       [ -4.84092011e+00,   9.38231833e-02,  -6.56466677e-01],
       [ -4.66565542e+00,  -4.58102439e-01,  -1.28941835e+00],
       [ -3.81156715e+00,  -1.22479625e-02,  -2.15711290e+00],
       [ -2.79262918e+00,   7.43759025e-03,  -2.57156887e+00],
       [ -4.30377282e+00,  -2.78681535e-01,  -1.21930215e+00],
       [ -3.72097526e+00,  -5.78713679e-01,  -2.10587338e+00],
       [ -3.97001451e+00,  -5.57184204e-01,  -1.69690833e+00],
       [ -3.98873446e+00,  -2.91098598e-01,  -2.30357374e+00],
       [ -1.88313803e+00,  -5.82916210e-01,  -3.53492835e+00],
       [ -3.88993013e+00,  -4.54866648e-01,  -1.79057867e+00],
       [ -8.44327079e+00,  -1.57039605e+00,   4.17907680e+00],
       [ -6.87415927e+00,  -5.06784790e-01,   2.19629660e+00],
       [ -7.91181719e+00,  -2.60384737e-01,   2.00408716e+00],
       [ -7.40256671e+00,  -1.91248927e-01,   2.01562798e+00],
       [ -8.03750558e+00,  -7.06688154e-01,   3.03704330e+00],
       [ -9.28782185e+00,   3.52295446e-01,   2.88000476e+00],
       [ -5.97680452e+00,  -6.31080761e-01,   2.04626347e+00],
       [ -8.57107720e+00,   6.29751099e-01,   2.03778301e+00],
       [ -8.27351857e+00,   7.31271747e-01,   2.44051959e+00],
       [ -7.85760620e+00,  -1.61790452e+00,   2.42912083e+00],
       [ -5.95592826e+00,  -1.15410745e+00,   4.89433032e-01],
       [ -7.07759451e+00,  -1.41269452e-01,   1.66597584e+00],
       [ -7.13145722e+00,  -6.16439694e-01,   1.52795604e+00],
       [ -7.08461297e+00,  -4.24601727e-01,   2.68234382e+00],
       [ -7.24257708e+00,  -1.35963732e+00,   3.32056082e+00],
       [ -6.75858385e+00,  -1.49590142e+00,   1.92099452e+00],
       [ -6.94722519e+00,  -3.25770071e-01,   1.27359895e+00],
       [ -8.40640873e+00,  -9.67495213e-01,   1.98447296e+00],
       [ -1.07153033e+01,   9.30482292e-01,   4.57532751e+00],
       [ -6.88395814e+00,   8.73409349e-01,   1.35267572e+00],
       [ -7.45594616e+00,  -1.05651852e+00,   2.05562061e+00],
       [ -6.46150847e+00,  -1.00428141e+00,   2.14571867e+00],
       [ -9.66188710e+00,   9.10445658e-01,   3.00766487e+00],
       [ -6.11132736e+00,  -2.75442630e-01,   5.92801474e-01],
       [ -7.18699507e+00,  -1.02282209e+00,   1.73262239e+00],
       [ -7.49554447e+00,  -6.54601137e-02,   1.00696351e+00],
       [ -5.78048234e+00,  -5.34955680e-01,   3.63029987e-01],
       [ -5.75593581e+00,  -8.39020522e-01,   4.74026003e-01],
       [ -7.81592614e+00,  -4.05163168e-01,   2.76491694e+00],
       [ -7.12955669e+00,   4.16282683e-01,   3.08546424e-01],
       [ -8.32618938e+00,   5.77413018e-01,   1.78180120e+00],
       [ -7.43894969e+00,  -7.80356879e-01,   3.90599998e-01],
       [ -7.91883565e+00,  -5.43717011e-01,   3.02045515e+00],
       [ -6.10889733e+00,   9.56671062e-02,   1.66954342e-01],
       [ -7.51231555e+00,   7.59888463e-01,   1.79526067e+00],
       [ -8.32107145e+00,  -1.71977085e-01,   1.98484283e+00],
       [ -7.28937507e+00,  -1.82298858e+00,   2.78172308e+00],
       [ -6.84259428e+00,  -5.27517358e-01,   1.29092463e+00],
       [ -5.57122053e+00,  -9.38450254e-01,   3.97681350e-01],
       [ -6.71761453e+00,  -7.92624807e-01,   9.56679520e-01],
       [ -7.56176896e+00,  -1.17608275e+00,   2.55899352e+00],
       [ -6.24479119e+00,  -1.24302978e+00,   7.26464438e-01],
       [ -6.87415927e+00,  -5.06784790e-01,   2.19629660e+00],
       [ -7.94987323e+00,  -9.82650965e-01,   2.72056746e+00],
       [ -7.59863311e+00,  -1.57703746e+00,   2.75477523e+00],
       [ -6.70013272e+00,  -1.10850864e+00,   1.46849347e+00],
       [ -6.73271047e+00,  -3.60640726e-02,   1.40229052e+00],
       [ -6.47440185e+00,  -7.76175045e-01,   1.04338387e+00],
       [ -6.77553616e+00,  -1.84163023e+00,   2.20274305e+00],
       [ -6.29136171e+00,  -8.06816934e-01,   1.30972537e+00]])

In [7]:
#listing the parameters
m.get_params()


Out[7]:
{'C': 1.0,
 'class_weight': None,
 'dual': False,
 'fit_intercept': True,
 'intercept_scaling': 1,
 'max_iter': 100,
 'multi_class': 'ovr',
 'n_jobs': 1,
 'penalty': 'l2',
 'random_state': None,
 'solver': 'liblinear',
 'tol': 0.0001,
 'verbose': 0,
 'warm_start': False}

In [10]:
#fitting the data and transforming the result
m.fit_transform(iris.data,iris.target)


C:\Users\priyu\Anaconda3\lib\site-packages\sklearn\utils\deprecation.py:70: DeprecationWarning: Function transform is deprecated; Support to use estimators as feature selectors will be removed in version 0.19. Use SelectFromModel instead.
  warnings.warn(msg, category=DeprecationWarning)
Out[10]:
array([[ 3.5,  1.4,  0.2],
       [ 3. ,  1.4,  0.2],
       [ 3.2,  1.3,  0.2],
       [ 3.1,  1.5,  0.2],
       [ 3.6,  1.4,  0.2],
       [ 3.9,  1.7,  0.4],
       [ 3.4,  1.4,  0.3],
       [ 3.4,  1.5,  0.2],
       [ 2.9,  1.4,  0.2],
       [ 3.1,  1.5,  0.1],
       [ 3.7,  1.5,  0.2],
       [ 3.4,  1.6,  0.2],
       [ 3. ,  1.4,  0.1],
       [ 3. ,  1.1,  0.1],
       [ 4. ,  1.2,  0.2],
       [ 4.4,  1.5,  0.4],
       [ 3.9,  1.3,  0.4],
       [ 3.5,  1.4,  0.3],
       [ 3.8,  1.7,  0.3],
       [ 3.8,  1.5,  0.3],
       [ 3.4,  1.7,  0.2],
       [ 3.7,  1.5,  0.4],
       [ 3.6,  1. ,  0.2],
       [ 3.3,  1.7,  0.5],
       [ 3.4,  1.9,  0.2],
       [ 3. ,  1.6,  0.2],
       [ 3.4,  1.6,  0.4],
       [ 3.5,  1.5,  0.2],
       [ 3.4,  1.4,  0.2],
       [ 3.2,  1.6,  0.2],
       [ 3.1,  1.6,  0.2],
       [ 3.4,  1.5,  0.4],
       [ 4.1,  1.5,  0.1],
       [ 4.2,  1.4,  0.2],
       [ 3.1,  1.5,  0.1],
       [ 3.2,  1.2,  0.2],
       [ 3.5,  1.3,  0.2],
       [ 3.1,  1.5,  0.1],
       [ 3. ,  1.3,  0.2],
       [ 3.4,  1.5,  0.2],
       [ 3.5,  1.3,  0.3],
       [ 2.3,  1.3,  0.3],
       [ 3.2,  1.3,  0.2],
       [ 3.5,  1.6,  0.6],
       [ 3.8,  1.9,  0.4],
       [ 3. ,  1.4,  0.3],
       [ 3.8,  1.6,  0.2],
       [ 3.2,  1.4,  0.2],
       [ 3.7,  1.5,  0.2],
       [ 3.3,  1.4,  0.2],
       [ 3.2,  4.7,  1.4],
       [ 3.2,  4.5,  1.5],
       [ 3.1,  4.9,  1.5],
       [ 2.3,  4. ,  1.3],
       [ 2.8,  4.6,  1.5],
       [ 2.8,  4.5,  1.3],
       [ 3.3,  4.7,  1.6],
       [ 2.4,  3.3,  1. ],
       [ 2.9,  4.6,  1.3],
       [ 2.7,  3.9,  1.4],
       [ 2. ,  3.5,  1. ],
       [ 3. ,  4.2,  1.5],
       [ 2.2,  4. ,  1. ],
       [ 2.9,  4.7,  1.4],
       [ 2.9,  3.6,  1.3],
       [ 3.1,  4.4,  1.4],
       [ 3. ,  4.5,  1.5],
       [ 2.7,  4.1,  1. ],
       [ 2.2,  4.5,  1.5],
       [ 2.5,  3.9,  1.1],
       [ 3.2,  4.8,  1.8],
       [ 2.8,  4. ,  1.3],
       [ 2.5,  4.9,  1.5],
       [ 2.8,  4.7,  1.2],
       [ 2.9,  4.3,  1.3],
       [ 3. ,  4.4,  1.4],
       [ 2.8,  4.8,  1.4],
       [ 3. ,  5. ,  1.7],
       [ 2.9,  4.5,  1.5],
       [ 2.6,  3.5,  1. ],
       [ 2.4,  3.8,  1.1],
       [ 2.4,  3.7,  1. ],
       [ 2.7,  3.9,  1.2],
       [ 2.7,  5.1,  1.6],
       [ 3. ,  4.5,  1.5],
       [ 3.4,  4.5,  1.6],
       [ 3.1,  4.7,  1.5],
       [ 2.3,  4.4,  1.3],
       [ 3. ,  4.1,  1.3],
       [ 2.5,  4. ,  1.3],
       [ 2.6,  4.4,  1.2],
       [ 3. ,  4.6,  1.4],
       [ 2.6,  4. ,  1.2],
       [ 2.3,  3.3,  1. ],
       [ 2.7,  4.2,  1.3],
       [ 3. ,  4.2,  1.2],
       [ 2.9,  4.2,  1.3],
       [ 2.9,  4.3,  1.3],
       [ 2.5,  3. ,  1.1],
       [ 2.8,  4.1,  1.3],
       [ 3.3,  6. ,  2.5],
       [ 2.7,  5.1,  1.9],
       [ 3. ,  5.9,  2.1],
       [ 2.9,  5.6,  1.8],
       [ 3. ,  5.8,  2.2],
       [ 3. ,  6.6,  2.1],
       [ 2.5,  4.5,  1.7],
       [ 2.9,  6.3,  1.8],
       [ 2.5,  5.8,  1.8],
       [ 3.6,  6.1,  2.5],
       [ 3.2,  5.1,  2. ],
       [ 2.7,  5.3,  1.9],
       [ 3. ,  5.5,  2.1],
       [ 2.5,  5. ,  2. ],
       [ 2.8,  5.1,  2.4],
       [ 3.2,  5.3,  2.3],
       [ 3. ,  5.5,  1.8],
       [ 3.8,  6.7,  2.2],
       [ 2.6,  6.9,  2.3],
       [ 2.2,  5. ,  1.5],
       [ 3.2,  5.7,  2.3],
       [ 2.8,  4.9,  2. ],
       [ 2.8,  6.7,  2. ],
       [ 2.7,  4.9,  1.8],
       [ 3.3,  5.7,  2.1],
       [ 3.2,  6. ,  1.8],
       [ 2.8,  4.8,  1.8],
       [ 3. ,  4.9,  1.8],
       [ 2.8,  5.6,  2.1],
       [ 3. ,  5.8,  1.6],
       [ 2.8,  6.1,  1.9],
       [ 3.8,  6.4,  2. ],
       [ 2.8,  5.6,  2.2],
       [ 2.8,  5.1,  1.5],
       [ 2.6,  5.6,  1.4],
       [ 3. ,  6.1,  2.3],
       [ 3.4,  5.6,  2.4],
       [ 3.1,  5.5,  1.8],
       [ 3. ,  4.8,  1.8],
       [ 3.1,  5.4,  2.1],
       [ 3.1,  5.6,  2.4],
       [ 3.1,  5.1,  2.3],
       [ 2.7,  5.1,  1.9],
       [ 3.2,  5.9,  2.3],
       [ 3.3,  5.7,  2.5],
       [ 3. ,  5.2,  2.3],
       [ 2.5,  5. ,  1.9],
       [ 3. ,  5.2,  2. ],
       [ 3.4,  5.4,  2.3],
       [ 3. ,  5.1,  1.8]])

In [11]:
#predict - in the output below, 0-Setosa, 1-Versicolour, 2-Virginica
m.predict(iris.data)


Out[11]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
       1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [12]:
#predict the probability estimates
m.predict_proba(iris.data)


Out[12]:
array([[  8.79681649e-01,   1.20307538e-01,   1.08131372e-05],
       [  7.99706325e-01,   2.00263292e-01,   3.03825365e-05],
       [  8.53796795e-01,   1.46177302e-01,   2.59031285e-05],
       [  8.25383127e-01,   1.74558937e-01,   5.79356669e-05],
       [  8.97323628e-01,   1.02665167e-01,   1.12050036e-05],
       [  9.26986574e-01,   7.30004562e-02,   1.29693872e-05],
       [  8.95064974e-01,   1.04895775e-01,   3.92506205e-05],
       [  8.61839691e-01,   1.38141399e-01,   1.89095833e-05],
       [  8.03156719e-01,   1.96758495e-01,   8.47861140e-05],
       [  7.95421554e-01,   2.04552763e-01,   2.56832240e-05],
       [  8.92083069e-01,   1.07910759e-01,   6.17176870e-06],
       [  8.63364991e-01,   1.36600589e-01,   3.44201798e-05],
       [  7.88177618e-01,   2.11794929e-01,   2.74526810e-05],
       [  8.35079702e-01,   1.64888155e-01,   3.21426418e-05],
       [  9.28349898e-01,   7.16491356e-02,   9.66254924e-07],
       [  9.64535656e-01,   3.54620850e-02,   2.25877936e-06],
       [  9.40906153e-01,   5.90890027e-02,   4.84421830e-06],
       [  8.91740161e-01,   1.08245661e-01,   1.41772124e-05],
       [  8.96525617e-01,   1.03467608e-01,   6.77567332e-06],
       [  9.23615524e-01,   7.63726510e-02,   1.18248373e-05],
       [  8.30668332e-01,   1.69316458e-01,   1.52093733e-05],
       [  9.21914602e-01,   7.80675598e-02,   1.78384021e-05],
       [  9.26584671e-01,   7.34068679e-02,   8.46162713e-06],
       [  8.67785629e-01,   1.32146178e-01,   6.81931916e-05],
       [  8.41271506e-01,   1.58655904e-01,   7.25903122e-05],
       [  7.77263282e-01,   2.22695181e-01,   4.15365716e-05],
       [  8.81389224e-01,   1.18568969e-01,   4.18075826e-05],
       [  8.69974782e-01,   1.30013638e-01,   1.15794893e-05],
       [  8.60034106e-01,   1.39955486e-01,   1.04082979e-05],
       [  8.32052869e-01,   1.67892968e-01,   5.41625519e-05],
       [  8.07811588e-01,   1.92136477e-01,   5.19350231e-05],
       [  8.72544939e-01,   1.27438925e-01,   1.61360155e-05],
       [  9.33948477e-01,   6.60477336e-02,   3.78900866e-06],
       [  9.46250501e-01,   5.37475145e-02,   1.98493064e-06],
       [  7.95421554e-01,   2.04552763e-01,   2.56832240e-05],
       [  8.47610513e-01,   1.52377535e-01,   1.19520539e-05],
       [  8.70019435e-01,   1.29976367e-01,   4.19728170e-06],
       [  7.95421554e-01,   2.04552763e-01,   2.56832240e-05],
       [  8.31024910e-01,   1.68917216e-01,   5.78737851e-05],
       [  8.57737250e-01,   1.42246900e-01,   1.58501104e-05],
       [  9.00222082e-01,   9.97646975e-02,   1.32206853e-05],
       [  6.90741687e-01,   3.09094698e-01,   1.63615590e-04],
       [  8.66068303e-01,   1.33887708e-01,   4.39884356e-05],
       [  9.16308833e-01,   8.36288777e-02,   6.22895883e-05],
       [  9.15519114e-01,   8.44392129e-02,   4.16734713e-05],
       [  8.20309627e-01,   1.79642381e-01,   4.79919885e-05],
       [  9.09855663e-01,   9.01327650e-02,   1.15724381e-05],
       [  8.51214451e-01,   1.48746052e-01,   3.94971199e-05],
       [  8.95519736e-01,   1.04472911e-01,   7.35323849e-06],
       [  8.51563342e-01,   1.48419676e-01,   1.69821772e-05],
       [  2.98900777e-02,   8.60393138e-01,   1.09716785e-01],
       [  3.74487166e-02,   7.05572459e-01,   2.56978825e-01],
       [  1.17957675e-02,   7.48252356e-01,   2.39951876e-01],
       [  1.32920493e-02,   6.51770445e-01,   3.34937506e-01],
       [  1.09868088e-02,   6.98832091e-01,   2.90181101e-01],
       [  1.07669519e-02,   5.83013186e-01,   4.06219862e-01],
       [  2.15200540e-02,   5.37732882e-01,   4.40747064e-01],
       [  1.08418544e-01,   7.68766189e-01,   1.22815267e-01],
       [  1.77270021e-02,   8.27562690e-01,   1.54710308e-01],
       [  3.30493839e-02,   5.28708770e-01,   4.38241846e-01],
       [  2.93117962e-02,   7.72717609e-01,   1.97970595e-01],
       [  4.09569813e-02,   6.19765980e-01,   3.39277039e-01],
       [  1.95378252e-02,   8.79697992e-01,   1.00764183e-01],
       [  8.73285529e-03,   5.96503817e-01,   3.94763328e-01],
       [  1.67434866e-01,   7.12756209e-01,   1.19808925e-01],
       [  4.75535678e-02,   8.43626581e-01,   1.08819852e-01],
       [  1.22530319e-02,   4.23869480e-01,   5.63877488e-01],
       [  3.84753639e-02,   8.50175432e-01,   1.11349204e-01],
       [  3.09968794e-03,   5.96264678e-01,   4.00635634e-01],
       [  3.59781700e-02,   8.08752206e-01,   1.55269624e-01],
       [  6.20745751e-03,   2.73106189e-01,   7.20686354e-01],
       [  5.81151228e-02,   8.19701311e-01,   1.22183566e-01],
       [  1.95840574e-03,   5.33800891e-01,   4.64240703e-01],
       [  8.77628703e-03,   7.04654010e-01,   2.86569703e-01],
       [  3.69274341e-02,   8.38990091e-01,   1.24082475e-01],
       [  3.61807169e-02,   8.28744840e-01,   1.35074443e-01],
       [  8.14489700e-03,   7.77156946e-01,   2.14698157e-01],
       [  4.64006697e-03,   5.23164549e-01,   4.72195384e-01],
       [  1.33500103e-02,   5.63205976e-01,   4.23444014e-01],
       [  1.28473017e-01,   8.31361691e-01,   4.01652917e-02],
       [  3.60902230e-02,   8.03217466e-01,   1.60692311e-01],
       [  5.05096042e-02,   8.46149445e-01,   1.03340951e-01],
       [  5.69724571e-02,   8.11250984e-01,   1.31776559e-01],
       [  1.22453086e-03,   3.99201919e-01,   5.99573550e-01],
       [  1.03123407e-02,   3.65034695e-01,   6.24652965e-01],
       [  4.17476538e-02,   4.77844283e-01,   4.80408063e-01],
       [  1.90525287e-02,   7.45629538e-01,   2.35317933e-01],
       [  7.05352060e-03,   7.56932682e-01,   2.36013798e-01],
       [  5.57541864e-02,   6.67410837e-01,   2.76834977e-01],
       [  2.10790319e-02,   6.62362244e-01,   3.16558724e-01],
       [  8.98003281e-03,   5.99716389e-01,   3.91303578e-01],
       [  1.52196906e-02,   6.32329159e-01,   3.52451150e-01],
       [  3.47695685e-02,   7.98625645e-01,   1.66604786e-01],
       [  9.15416570e-02,   7.95877151e-01,   1.12581192e-01],
       [  1.98418694e-02,   6.40871800e-01,   3.39286330e-01],
       [  4.81040905e-02,   7.31039981e-01,   2.20855929e-01],
       [  3.44565240e-02,   6.77463657e-01,   2.88079819e-01],
       [  3.38822929e-02,   7.96899915e-01,   1.69217792e-01],
       [  2.54574647e-01,   6.90791330e-01,   5.46340233e-02],
       [  3.63488963e-02,   7.04234211e-01,   2.59416893e-01],
       [  1.86036022e-04,   1.48760823e-01,   8.51053141e-01],
       [  8.09069371e-04,   2.94422745e-01,   7.04768186e-01],
       [  2.78126551e-04,   3.30535386e-01,   6.69186488e-01],
       [  4.56288643e-04,   3.38732197e-01,   6.60811514e-01],
       [  2.51393977e-04,   2.57092194e-01,   7.42656412e-01],
       [  6.03186905e-05,   3.82744333e-01,   6.17195349e-01],
       [  2.04838186e-03,   2.81103453e-01,   7.16848165e-01],
       [  1.23247784e-04,   4.24393655e-01,   5.75483097e-01],
       [  1.59929758e-04,   4.23195996e-01,   5.76644074e-01],
       [  3.56390886e-04,   1.52542892e-01,   8.47100717e-01],
       [  2.99635433e-03,   2.78024684e-01,   7.18978962e-01],
       [  6.45242833e-04,   3.55681241e-01,   6.43673516e-01],
       [  6.81029987e-04,   2.98859721e-01,   7.00459249e-01],
       [  6.28418142e-04,   2.96807692e-01,   7.02563890e-01],
       [  6.10997845e-04,   1.74593604e-01,   8.24795398e-01],
       [  1.09757190e-03,   1.73257823e-01,   8.25644605e-01],
       [  7.99254871e-04,   3.48929847e-01,   6.50270898e-01],
       [  1.93443479e-04,   2.38473708e-01,   7.61332849e-01],
       [  1.30064976e-05,   4.20137191e-01,   5.79849802e-01],
       [  6.81548718e-04,   4.69975854e-01,   5.29342597e-01],
       [  5.04477452e-04,   2.25292722e-01,   7.74202801e-01],
       [  1.33913767e-03,   2.30143290e-01,   7.68517573e-01],
       [  3.82097113e-05,   4.28006955e-01,   5.71954836e-01],
       [  2.05299242e-03,   4.00421888e-01,   5.97525119e-01],
       [  6.77847072e-04,   2.37204010e-01,   7.62118143e-01],
       [  4.56383243e-04,   3.97527741e-01,   6.02015876e-01],
       [  3.19858866e-03,   3.83866887e-01,   6.12934525e-01],
       [  3.42364119e-03,   3.27541103e-01,   6.69035256e-01],
       [  3.00544917e-04,   2.98288662e-01,   7.01410793e-01],
       [  6.78376797e-04,   5.10705151e-01,   4.88616472e-01],
       [  1.61719140e-04,   4.27941843e-01,   5.71896438e-01],
       [  6.44775841e-04,   3.44845359e-01,   6.54509865e-01],
       [  2.75279882e-04,   2.78027400e-01,   7.21697320e-01],
       [  2.07731418e-03,   4.90652652e-01,   5.07270034e-01],
       [  3.54683506e-04,   4.42580814e-01,   5.57064503e-01],
       [  1.82017584e-04,   3.42008155e-01,   6.57809828e-01],
       [  6.30908753e-04,   1.28602511e-01,   8.70766580e-01],
       [  9.21940559e-04,   3.20888055e-01,   6.78190005e-01],
       [  4.29311663e-03,   3.18426266e-01,   6.77280618e-01],
       [  1.16680587e-03,   3.00989509e-01,   6.97843685e-01],
       [  4.46290865e-04,   2.02461924e-01,   7.97091785e-01],
       [  2.15227432e-03,   2.48822456e-01,   7.49025270e-01],
       [  8.09069371e-04,   2.94422745e-01,   7.04768186e-01],
       [  2.91162367e-04,   2.24919706e-01,   7.74789132e-01],
       [  4.50477099e-04,   1.53984748e-01,   8.45564775e-01],
       [  1.15724730e-03,   2.33616548e-01,   7.65226205e-01],
       [  9.19025197e-04,   3.79220387e-01,   6.19860588e-01],
       [  1.45811816e-03,   2.98379693e-01,   7.00162189e-01],
       [  1.09779827e-03,   1.31785617e-01,   8.67116585e-01],
       [  1.68397530e-03,   2.81057800e-01,   7.17258224e-01]])

In [13]:
#predict the log of probability estimates
m.predict_log_proba(iris.data)


Out[13]:
array([[ -0.1281952 ,  -2.117704  , -11.43474875],
       [ -0.22351071,  -1.60812232, -10.40164257],
       [ -0.15806206,  -1.922935  , -10.56114681],
       [ -0.1919076 ,  -1.74549284,  -9.75617735],
       [ -0.10833869,  -2.27628239, -11.39915013],
       [ -0.0758162 ,  -2.61728959, -11.25291881],
       [ -0.11085897,  -2.25478804, -10.1455433 ],
       [ -0.148686  ,  -1.97947749, -10.87584171],
       [ -0.21920542,  -1.62577821,  -9.37537878],
       [ -0.22888305,  -1.58692933, -10.56967254],
       [ -0.11419602,  -2.2264507 , -11.9955251 ],
       [ -0.14691774,  -1.99069402, -10.27686754],
       [ -0.23803181,  -1.55213679, -10.50304673],
       [ -0.18022811,  -1.80248788, -10.34532701],
       [ -0.07434657,  -2.63597419, -13.84983814],
       [ -0.03610848,  -3.33929118, -13.00068599],
       [ -0.06091188,  -2.82871045, -12.23772467],
       [ -0.11458049,  -2.22335199, -11.16387464],
       [ -0.10922841,  -2.26849668, -11.90217181],
       [ -0.07945939,  -2.57213062, -11.34530838],
       [ -0.18552468,  -1.77598578, -11.09359866],
       [ -0.08130268,  -2.55018068, -10.934157  ],
       [ -0.07624985,  -2.61173778, -11.67996907],
       [ -0.14181057,  -2.02384656,  -9.59316583],
       [ -0.17284083,  -1.84101755,  -9.53067909],
       [ -0.25197614,  -1.50195134, -10.08893628],
       [ -0.12625595,  -2.13226047, -10.08243283],
       [ -0.13929105,  -2.04011593, -11.36627519],
       [ -0.15078323,  -1.96643087, -11.47290719],
       [ -0.1838593 ,  -1.7844286 ,  -9.82352081],
       [ -0.21342643,  -1.64954934,  -9.86551718],
       [ -0.13634112,  -2.06011805, -11.03445679],
       [ -0.06833401,  -2.71737756, -12.48340614],
       [ -0.05524795,  -2.92345785, -13.12992659],
       [ -0.22888305,  -1.58692933, -10.56967254],
       [ -0.16533405,  -1.88139406, -11.33460742],
       [ -0.13923973,  -2.04040263, -12.38107346],
       [ -0.22888305,  -1.58692933, -10.56967254],
       [ -0.18509551,  -1.77834653,  -9.75724604],
       [ -0.15345746,  -1.950191  , -11.05233409],
       [ -0.10511379,  -2.30494089, -11.23372789],
       [ -0.36998935,  -1.17410758,  -8.71799084],
       [ -0.1437915 ,  -2.01075383, -10.03158379],
       [ -0.08740182,  -2.48136639,  -9.68371627],
       [ -0.08826404,  -2.47172338, -10.08564581],
       [ -0.19807342,  -1.71678718,  -9.94447647],
       [ -0.0944693 ,  -2.40647153, -11.36688431],
       [ -0.16109118,  -1.90551478, -10.1392828 ],
       [ -0.11035102,  -2.25882747, -11.82036973],
       [ -0.16068139,  -1.90771137, -10.98334616],
       [ -3.5102287 ,  -0.15036586,  -2.20985292],
       [ -3.28478284,  -0.34874581,  -1.35876159],
       [ -4.4400145 ,  -0.29001498,  -1.42731689],
       [ -4.32058922,  -0.42806286,  -1.09381131],
       [ -4.51105993,  -0.35834478,  -1.23725007],
       [ -4.53127384,  -0.53954548,  -0.90086073],
       [ -3.83877003,  -0.62039334,  -0.81928412],
       [ -2.22175614,  -0.2629684 ,  -2.09707395],
       [ -4.03266626,  -0.18927042,  -1.86620089],
       [ -3.40975235,  -0.63731753,  -0.82498436],
       [ -3.52976524,  -0.25784162,  -1.61963677],
       [ -3.195233  ,  -0.47841332,  -1.08093828],
       [ -3.93540294,  -0.12817662,  -2.29497231],
       [ -4.7406629 ,  -0.51666964,  -0.92946886],
       [ -1.78716086,  -0.33861584,  -2.1218571 ],
       [ -3.04589846,  -0.17004532,  -2.2180615 ],
       [ -4.40198187,  -0.8583297 ,  -0.57291827],
       [ -3.25773714,  -0.16231256,  -2.19508404],
       [ -5.77645384,  -0.51707062,  -0.91470291],
       [ -3.32484291,  -0.21226271,  -1.86259216],
       [ -5.08200388,  -1.29789459,  -0.32755125],
       [ -2.84532936,  -0.19881526,  -2.10223072],
       [ -6.23562454,  -0.62773237,  -0.7673521 ],
       [ -4.73570185,  -0.35004836,  -1.24977348],
       [ -3.29880053,  -0.17555638,  -2.08680881],
       [ -3.31922899,  -0.18784296,  -2.00192922],
       [ -4.81036368,  -0.25211296,  -1.53852216],
       [ -5.37302648,  -0.64785924,  -0.75036243],
       [ -4.31623812,  -0.57410986,  -0.85933397],
       [ -2.05203638,  -0.18469033,  -3.21475205],
       [ -3.32173328,  -0.21912978,  -1.82826386],
       [ -2.98559178,  -0.16705929,  -2.26972155],
       [ -2.86518734,  -0.2091778 ,  -2.02664753],
       [ -6.70519748,  -0.91828793,  -0.51153663],
       [ -4.57441397,  -1.00776288,  -0.47055904],
       [ -3.17611203,  -0.73847037,  -0.7331194 ],
       [ -3.96055544,  -0.2935264 ,  -1.44681777],
       [ -4.95422841,  -0.27848096,  -1.44386501],
       [ -2.88680278,  -0.40434948,  -1.2843337 ],
       [ -3.85947648,  -0.41194268,  -1.15024651],
       [ -4.71275174,  -0.51129842,  -0.93827161],
       [ -4.18516525,  -0.4583452 ,  -1.04284325],
       [ -3.35901274,  -0.22486297,  -1.79213082],
       [ -2.39096114,  -0.22831044,  -2.18408061],
       [ -3.91996096,  -0.44492584,  -1.0809109 ],
       [ -3.03438806,  -0.31328713,  -1.5102447 ],
       [ -3.36805692,  -0.38939937,  -1.24451769],
       [ -3.38486273,  -0.22702619,  -1.77656868],
       [ -1.36816118,  -0.36991748,  -2.90709845],
       [ -3.31459144,  -0.35064429,  -1.34931889],
       [ -8.58957024,  -1.90541548,  -0.16128071],
       [ -7.1196259 ,  -1.22273864,  -0.34988634],
       [ -8.18743433,  -1.10704156,  -0.4016925 ],
       [ -7.69238496,  -1.08254546,  -0.41428663],
       [ -8.28848922,  -1.35832053,  -0.29752177],
       [ -9.71586854,  -0.96038805,  -0.48256969],
       [ -6.19070513,  -1.26903252,  -0.33289123],
       [ -9.00131372,  -0.85709382,  -0.55254542],
       [ -8.74077585,  -0.85991986,  -0.55053006],
       [ -7.93948244,  -1.88030946,  -0.16593568],
       [ -5.81035895,  -1.28004538,  -0.32992318],
       [ -7.34588383,  -1.03372034,  -0.44056364],
       [ -7.29190422,  -1.20778098,  -0.35601909],
       [ -7.37230478,  -1.21467085,  -0.35301894],
       [ -7.40041713,  -1.74529427,  -0.19261993],
       [ -6.8146549 ,  -1.75297449,  -0.19159086],
       [ -7.13183068,  -1.05288439,  -0.43036624],
       [ -8.55052519,  -1.43349622,  -0.27268463],
       [-11.25006151,  -0.86717397,  -0.54498617],
       [ -7.29114282,  -0.75507396,  -0.63611943],
       [ -7.59198741,  -1.49035474,  -0.25592142],
       [ -6.6157294 ,  -1.46905317,  -0.26329185],
       [-10.17242085,  -0.84861583,  -0.55869525],
       [ -6.18845683,  -0.91523657,  -0.51495896],
       [ -7.29658885,  -1.43883471,  -0.27165369],
       [ -7.69217766,  -0.92249056,  -0.50747146],
       [ -5.74504561,  -0.95745944,  -0.48949716],
       [ -5.67705062,  -1.11614173,  -0.40191852],
       [ -8.10991334,  -1.2096936 ,  -0.35466155],
       [ -7.29580768,  -0.67196286,  -0.71617741],
       [ -8.72964943,  -0.84876797,  -0.55879736],
       [ -7.34660784,  -1.0646592 ,  -0.42386862],
       [ -8.19772222,  -1.28003561,  -0.32614945],
       [ -6.17667948,  -0.71201883,  -0.67871181],
       [ -7.9442847 ,  -0.8151322 ,  -0.58507424],
       [ -8.61140726,  -1.0729207 ,  -0.4188394 ],
       [ -7.36834931,  -2.05102894,  -0.13838133],
       [ -6.98902981,  -1.13666296,  -0.38832779],
       [ -5.45074232,  -1.14436434,  -0.38966959],
       [ -6.75348529,  -1.20067987,  -0.35976015],
       [ -7.71453965,  -1.59720344,  -0.22678544],
       [ -6.14123017,  -1.39101567,  -0.28898256],
       [ -7.1196259 ,  -1.22273864,  -0.34988634],
       [ -8.14162948,  -1.4920118 ,  -0.25516437],
       [ -7.70520332,  -1.87090172,  -0.1677505 ],
       [ -6.76171111,  -1.45407419,  -0.2675838 ],
       [ -6.99219702,  -0.96963775,  -0.47826068],
       [ -6.5306086 ,  -1.20938847,  -0.35644327],
       [ -6.81444867,  -2.02657879,  -0.14258184],
       [ -6.38659803,  -1.26919494,  -0.33231936]])

In [14]:
#returns the mean accuracy on the given test data and labels
m.score(iris.data,iris.target)


Out[14]:
0.95999999999999996

In [16]:
#convert coefficient matrix to sparse format
m.sparsify()


Out[16]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)