In [ ]:
This notebook is based on the "Intro to pandas data structures" by Greg Reda(http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures//)
In [6]:
# import and configure the required modules.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
pd.set_option('max_columns', 50)
%matplotlib inline
In [9]:
# Series
s = pd.Series([8, 'This is a string', 3.14, -1.423423423423, "Another string!"])
s
Out[9]:
In [10]:
d = {'New Delhi': 11, 'Bombay': 22, 'Kolkata': 33, 'Chennai': 44, 'Bangalore': 80}
cities = pd.Series(d)
cities
Out[10]:
In [11]:
cities['Bangalore']
Out[11]:
In [13]:
cities[['Bangalore', 'Kolkata', 'Bombay']]
Out[13]:
In [14]:
cities < 20
Out[14]:
In [15]:
cities > 20
Out[15]:
In [16]:
cities[cities > 20]
Out[16]:
In [18]:
print 'old value:', cities['Bangalore']
cities['Bangalore'] = 90
print 'New value:', cities['Bangalore']
In [19]:
cities
Out[19]:
In [20]:
print(cities[cities < 90])
print('\n')
cities[cities < 90] = 750
print cities[cities < 90]
In [21]:
cities
Out[21]:
In [22]:
print 'Bangalore' in cities
print 'Mysore' in cities
In [23]:
cities / 3
Out[23]:
In [24]:
np.square(cities)
Out[24]:
In [26]:
cities[['New Delhi', 'Bombay', 'Mangalore']]
Out[26]:
In [28]:
cities[['New Delhi', 'Bombay', 'Mangalore']] + cities[['Bangalore', 'Mysore']]
Out[28]:
In [29]:
cities.notnull()
Out[29]:
In [30]:
cities.isnull()
Out[30]:
In [32]:
data = {'year': [2010, 2011, 2012, 2011, 2012, 2010, 2011, 2012],
'team': ['Bears', 'Bears', 'Bears', 'Packers', 'Packers', 'Lions', 'Lions', 'Lions'],
'wins': [11, 8, 10, 15, 11, 6, 10, 4],
'losses': [5, 8, 6, 1, 5, 10, 6, 12]}
In [33]:
football = pd.DataFrame(data, columns=['year', 'team', 'wins', 'losses'])
football
Out[33]:
In [38]:
!head -n 5 data.csv
In [41]:
from_csv = pd.read_csv("data.csv")
from_csv.head()
Out[41]:
In [42]:
cols = ['num', 'game', 'date', 'team', 'home_away', 'opponent',
'result', 'quarter', 'distance', 'receiver', 'score_before',
'score_after']
no_headers = pd.read_csv('peyton-passing-TDs-2012.csv', sep=',', header=None, names=cols)
no_headers.head()
Out[42]:
In [44]:
no_headers.to_csv('out.csv')
In [ ]: