In [1]:
import numpy as np
In [2]:
a = np.array([1, 2, 3, 4])
b = np.array([1, 2, 1, 2])
In [3]:
print a + b
print a - b
print a * b
print a / b
print a ** b
In [4]:
a = np.array([1, 2, 3, 4])
b = 2
In [5]:
print a + b
print a - b
print a * b
print a / b
print a ** b
In [6]:
a = np.array([True, True, False, False])
b = np.array([True, False, True, False])
In [7]:
print a & b
print a | b
print ~a
print a & True
print a & False
print a | True
print a | False
In [8]:
a = np.array([1, 2, 3, 4, 5])
b = np.array([5, 4, 3, 2, 1])
In [9]:
print a > b
print a >= b
print a < b
print a <= b
print a == b
print a != b
In [10]:
a = np.array([1, 2, 3, 4])
b = 2
In [11]:
print a > b
print a >= b
print a < b
print a <= b
print a == b
print a != b
In [12]:
countries = np.array([
'Algeria', 'Argentina', 'Armenia', 'Aruba', 'Austria','Azerbaijan',
'Bahamas', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Bolivia',
'Botswana', 'Brunei', 'Bulgaria', 'Burkina Faso', 'Burundi',
'Cambodia', 'Cameroon', 'Cape Verde'
])
In [13]:
female_completion = np.array([
97.35583, 104.62379, 103.02998, 95.14321, 103.69019,
98.49185, 100.88828, 95.43974, 92.11484, 91.54804,
95.98029, 98.22902, 96.12179, 119.28105, 97.84627,
29.07386, 38.41644, 90.70509, 51.7478 , 95.45072
])
In [15]:
male_completion = np.array([
95.47622, 100.66476, 99.7926 , 91.48936, 103.22096,
97.80458, 103.81398, 88.11736, 93.55611, 87.76347,
102.45714, 98.73953, 92.22388, 115.3892 , 98.70502,
37.00692, 45.39401, 91.22084, 62.42028, 90.66958
])
In [20]:
def overall_completion_rate(female_completion, male_completion):
'''
Fill in this function to return a NumPy array containing the overall
school completion rate for each country. The arguments are NumPy
arrays giving the female and male completion of each country in
the same order.
'''
overall_completion = (female_completion + male_completion) / 2.0
return overall_completion
In [22]:
overall_completion_rate(female_completion, male_completion)
Out[22]:
In [23]:
# First 20 countries with employment data
countries = np.array([
'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Argentina',
'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas',
'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium',
'Belize', 'Benin', 'Bhutan', 'Bolivia',
'Bosnia and Herzegovina'
])
# Employment data in 2007 for those 20 countries
employment = np.array([
55.70000076, 51.40000153, 50.5 , 75.69999695,
58.40000153, 40.09999847, 61.5 , 57.09999847,
60.90000153, 66.59999847, 60.40000153, 68.09999847,
66.90000153, 53.40000153, 48.59999847, 56.79999924,
71.59999847, 58.40000153, 70.40000153, 41.20000076
])
In [32]:
values = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [35]:
def standardize_data(values):
'''
Fill in this function to return a standardized version of the given values,
which will be in a NumPy array. Each value should be translated into the
number of standard deviations that value is away from the mean of the data.
(A positive number indicates a value higher than the mean, and a negative
number indicates a value lower than the mean.)
'''
mean_values = values.mean()
std_values = values.std()
out_values = (values - mean_values) / std_values
return out_values
In [36]:
standardize_data(values)
Out[36]:
In [ ]: