In [1]:
import tensorflow as tf
In [3]:
import numpy as np
In [5]:
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 00.3
In [6]:
weight = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
In [9]:
biases = tf.Variable(tf.zeros([1]))
In [10]:
y = weight * x_data + biases
In [11]:
loss = tf.reduce_mean(tf.square(y-y_data))
In [12]:
optimizer = tf.train.GradientDescentOptimizer(0.5)
In [13]:
train = optimizer.minimize(loss)
In [16]:
init = tf.global_variables_initializer()
In [17]:
sess = tf.Session()
In [18]:
sess.run(init)
In [21]:
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(weight), sess.run(biases))
In [ ]:
In [ ]:
def g(n):
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: