In [1]:
import tensorflow as tf

In [3]:
import numpy as np

In [5]:
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 00.3

In [6]:
weight = tf.Variable(tf.random_uniform([1], -1.0, 1.0))

In [9]:
biases = tf.Variable(tf.zeros([1]))

In [10]:
y = weight * x_data + biases

In [11]:
loss = tf.reduce_mean(tf.square(y-y_data))

In [12]:
optimizer = tf.train.GradientDescentOptimizer(0.5)

In [13]:
train = optimizer.minimize(loss)

In [16]:
init = tf.global_variables_initializer()

In [17]:
sess = tf.Session()

In [18]:
sess.run(init)

In [21]:
for step in range(201):
    sess.run(train)
    if step  % 20 == 0:
        print(step, sess.run(weight), sess.run(biases))


0 [ 0.69158053] [-0.0334721]
20 [ 0.27189481] [ 0.20404713]
40 [ 0.14983082] [ 0.2721841]
60 [ 0.11444556] [ 0.2919364]
80 [ 0.10418765] [ 0.29766244]
100 [ 0.10121397] [ 0.29932237]
120 [ 0.10035191] [ 0.29980358]
140 [ 0.10010203] [ 0.29994306]
160 [ 0.10002957] [ 0.2999835]
180 [ 0.10000858] [ 0.29999521]
200 [ 0.10000247] [ 0.29999864]

In [ ]:


In [ ]:
def g(n):

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: