In [14]:
df = pd.read_csv('../canseq/tcga/tcga.brca.metadata.txt', sep='\t')

In [15]:
df.count()


Out[15]:
Sample Type                            919
PAM50_mRna                             579
name                                   919
Complete_TCGA_ID                       919
Gender                                 909
Age_at_Initial_Pathologic_Diagnosis    909
ER_Status                              909
PR_Status                              909
HER2_Final_Status                      876
Tumor                                  876
Tumor_T1_Coded                         873
Node                                   876
Node_Coded                             876
Metastasis                             870
Metastasis_Coded                       870
AJCC_Stage                             876
Converted_Stage                        876
Survival_Data_Form                     909
Vital_Status                           909
Days_to_Date_of_Last_Contact           909
Days_to_date_of_Death                  131
OS_event                               909
OS_Time                                909
PAM50_mRNA                             579
SigClust_Unsupervised_mRNA             579
SigClust_Intrinsic_mRNA                579
miRNA_Clusters                         777
methylation_Clusters                   896
RPPA_Clusters                          449
CN_Clusters                            869
Integrated_Clusters_with_PAM50         393
Integrated_Clusters_no_exp             393
Integrated_Clusters_unsup_exp          393
dtype: int64

In [16]:
df.Days_to_date_of_Death


Out[16]:
0     1555
1      NaN
2      NaN
3     2762
4      NaN
5      NaN
6      NaN
7      NaN
8      NaN
9      NaN
10     NaN
11     NaN
12     NaN
13     NaN
14     NaN
...
904     NaN
905     NaN
906    2192
907     NaN
908     NaN
909    1388
910    1759
911    2052
912    1796
913     NaN
914     NaN
915     NaN
916     NaN
917     NaN
918    1998
Name: Days_to_date_of_Death, Length: 919, dtype: float64

In [19]:
df[['Days_to_date_of_Death', 'Vital_Status']]


Out[19]:
Days_to_date_of_Death Vital_Status
0 1555 DECEASED
1 NaN LIVING
2 NaN LIVING
3 2762 DECEASED
4 NaN LIVING
5 NaN LIVING
6 NaN LIVING
7 NaN LIVING
8 NaN LIVING
9 NaN LIVING
10 NaN LIVING
11 NaN LIVING
12 NaN LIVING
13 NaN LIVING
14 NaN LIVING
15 967 DECEASED
16 NaN LIVING
17 NaN LIVING
18 NaN LIVING
19 NaN LIVING
20 NaN LIVING
21 NaN LIVING
22 NaN LIVING
23 NaN LIVING
24 NaN LIVING
25 NaN LIVING
26 NaN LIVING
27 NaN LIVING
28 NaN LIVING
29 NaN LIVING
30 NaN LIVING
31 NaN LIVING
32 523 DECEASED
33 NaN LIVING
34 NaN LIVING
35 NaN LIVING
36 NaN LIVING
37 NaN LIVING
38 NaN LIVING
39 NaN LIVING
40 NaN LIVING
41 NaN LIVING
42 NaN LIVING
43 NaN LIVING
44 NaN LIVING
45 NaN LIVING
46 NaN LIVING
47 NaN LIVING
48 NaN LIVING
49 NaN LIVING
50 NaN LIVING
51 NaN LIVING
52 NaN LIVING
53 NaN LIVING
54 754 DECEASED
55 NaN LIVING
56 NaN LIVING
57 NaN LIVING
58 NaN LIVING
59 NaN LIVING
... ...

919 rows × 2 columns


In [20]:
df.Vital_Status.value_counts()


Out[20]:
LIVING      778
DECEASED    131
dtype: int64

In [21]:
((df.Vital_Status == 'DECEASED') & (df.Age_at_Initial_Pathologic_Diagnosis <= 70)).sum()


Out[21]:
94

In [22]:
df


Out[22]:
Sample Type PAM50_mRna name Complete_TCGA_ID Gender Age_at_Initial_Pathologic_Diagnosis ER_Status PR_Status HER2_Final_Status Tumor Tumor_T1_Coded Node Node_Coded Metastasis Metastasis_Coded AJCC_Stage Converted_Stage Survival_Data_Form Vital_Status Days_to_Date_of_Last_Contact
0 Metastatic Basal-like unc.edu.ded1efed-b3b9-4d1a-b4c9-b595543fc461.1... TCGA-BH-A18V FEMALE 48 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB No_Conversion enrollment DECEASED 1555 ...
1 Primary solid Tumor Basal-like unc.edu.4d12d021-3673-4e14-9fd9-033f811f87da.1... TCGA-A2-A04U FEMALE 47 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 670 ...
2 Primary solid Tumor Basal-like unc.edu.3e57b40c-7079-4f05-bf37-f560304966c1.1... TCGA-AR-A0TS FEMALE 46 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage II No_Conversion enrollment LIVING 1138 ...
3 Primary solid Tumor Basal-like unc.edu.78e00469-0dd6-490e-93f1-068b9a386839.1... TCGA-BH-A18K FEMALE 46 Positive Positive Negative T1 T1 N0 Negative M0 Negative Stage I Stage I enrollment DECEASED 2547 ...
4 Primary solid Tumor Basal-like unc.edu.46262a6c-8a11-4bb9-8851-8b6e44c95288.1... TCGA-E2-A150 FEMALE 48 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 591 ...
5 Primary solid Tumor Basal-like unc.edu.c1dc3f35-324b-4a69-b32c-24652ccf9e3a.1... TCGA-AN-A0FX FEMALE 52 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA No_Conversion enrollment LIVING 10 ...
6 Primary solid Tumor Basal-like unc.edu.e3b4918d-43c1-4dde-9a92-f9c5cd6e63a0.1... TCGA-A1-A0SO FEMALE 67 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB Stage IIB enrollment LIVING 852 ...
7 Primary solid Tumor Basal-like unc.edu.ce045098-cbfb-4c73-9bbe-6a1d677ae0b0.1... TCGA-A8-A07R FEMALE 80 Negative Negative Equivocal T2 T_Other N3 Positive M0 Negative Stage IIIC Stage IIIC enrollment LIVING 273 ...
8 Primary solid Tumor Basal-like unc.edu.79d7a589-60bd-4b4a-89c1-d557fe24c733.1... TCGA-A2-A04T FEMALE 62 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 2246 ...
9 Primary solid Tumor Basal-like unc.edu.d9f827bb-2498-49b0-aa85-71cb554eb926.1... TCGA-E2-A14X FEMALE 55 Negative Negative Negative T2 T_Other N2 Positive M0 Negative Stage IIIA Stage IIIA enrollment LIVING 692 ...
10 Primary solid Tumor Basal-like unc.edu.6d2744ba-4817-482b-ad46-2e4e0897ad88.1... TCGA-BH-A0B3 FEMALE 53 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB No_Conversion followup LIVING 1203 ...
11 Primary solid Tumor Basal-like unc.edu.920e47c0-1b19-46e6-b1db-b5fd95e44df0.1... TCGA-A2-A0ST FEMALE 62 Negative Negative Negative T1 T1 N1 Positive M0 Negative Stage IIA No_Conversion enrollment LIVING 1643 ...
12 Primary solid Tumor Basal-like unc.edu.4808bc63-000a-4a49-a25b-4b817ca5ea54.1... TCGA-AO-A0J4 FEMALE 41 Negative Negative Negative T1 T1 N0 Negative M0 Negative Stage IA Stage I followup LIVING 294 ...
13 Primary solid Tumor Basal-like unc.edu.6e45dd01-225d-4871-9a3a-f591808ad234.1... TCGA-E2-A14N FEMALE 37 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB Stage IIB enrollment LIVING 1350 ...
14 Primary solid Tumor Basal-like unc.edu.2e9c893c-1d72-49a7-8755-1ede20b26fcf.1... TCGA-B6-A0IQ FEMALE 40 Negative Negative Negative T3 T_Other N1 Positive M0 Negative Stage IIIA No_Conversion followup LIVING 4284 ...
15 Primary solid Tumor Basal-like unc.edu.a63583ca-0ef2-4417-b435-5f3a6951d0c2.1... TCGA-A1-A0SK FEMALE 54 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup DECEASED 594 ...
16 Primary solid Tumor Basal-like unc.edu.1fe98b05-6803-4803-83cd-a59e794b956e.1... TCGA-AO-A0J6 FEMALE 61 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 775 ...
17 Primary solid Tumor Basal-like unc.edu.95c7abfa-a417-4d81-96c2-a952a081d997.1... TCGA-E2-A159 FEMALE 50 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 515 ...
18 Primary solid Tumor Basal-like unc.edu.74cba80b-7677-41d6-ab22-10f1a962ba2f.1... TCGA-AN-A0XU FEMALE 54 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 10 ...
19 Primary solid Tumor Basal-like unc.edu.2ad8d416-08a4-4e6f-947e-d74269d02ab1.1... TCGA-A2-A0D2 FEMALE 45 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIB Stage IIA followup LIVING 1027 ...
20 Primary solid Tumor Basal-like unc.edu.9f440cd6-d55f-4cb6-a433-637ef1f9d38f.1... TCGA-D8-A142 FEMALE 74 Negative Negative Negative T3 T_Other N0 Negative M0 Negative Stage IIB Stage IIB followup LIVING 425 ...
21 Primary solid Tumor Basal-like unc.edu.a8a7a335-8e21-4f24-b48b-8764caa21329.1... TCGA-BH-A18G FEMALE 81 Negative Negative Negative T1 T1 N0 Negative M0 Negative Stage X No_Conversion enrollment LIVING 61 ...
22 Primary solid Tumor Basal-like unc.edu.fa462e79-c5a4-4ddc-b3e6-32e8adcdd80c.1... TCGA-E2-A1AZ FEMALE 63 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB Stage IIB enrollment LIVING 1964 ...
23 Primary solid Tumor Basal-like unc.edu.43326f71-c61c-410b-af4b-c71a054e27c9.1... TCGA-E2-A158 FEMALE 43 Negative Negative Negative T1 T1 N1 Positive M0 Negative Stage IIA Stage IIA enrollment LIVING 450 ...
24 Primary solid Tumor Basal-like unc.edu.dea20128-b180-4da1-9da5-0f00bea3b1ab.1... TCGA-AR-A0U0 FEMALE 73 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage II No_Conversion enrollment LIVING 8 ...
25 Primary solid Tumor Basal-like unc.edu.c09e8a88-5a82-4fd6-8d03-ef3ecb988003.1... TCGA-AN-A0G0 FEMALE 56 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA No_Conversion enrollment LIVING 16 ...
26 Primary solid Tumor Basal-like unc.edu.ad46ed65-3cc2-4956-9d90-3e1edca24417.1... TCGA-B6-A0RE FEMALE 61 Negative Negative Negative TX NaN N0 Negative M0 Negative [Not Available] No_Conversion followup LIVING 6434 ...
27 Primary solid Tumor Basal-like unc.edu.1013446f-5beb-485d-809a-efe81a2138dd.1... TCGA-BH-A0DL FEMALE 64 Positive Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 1467 ...
28 Primary solid Tumor Basal-like unc.edu.77daa4a6-93c2-4455-a173-ead372d92010.1... TCGA-A8-A07U FEMALE 66 Negative Positive Negative T2 T_Other N2 Positive M0 Negative Stage IIIA Stage IIIA enrollment LIVING 303 ...
29 Primary solid Tumor Basal-like unc.edu.a2c80f8e-f08d-4574-90a0-f0651c0a9b1b.1... TCGA-E2-A1B5 FEMALE 46 Positive Positive Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 774 ...
30 Primary solid Tumor Basal-like unc.edu.b7f491a9-eddf-43b1-9baf-862db2d50383.1... TCGA-A7-A13E FEMALE 62 Positive Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB No_Conversion followup LIVING 326 ...
31 Primary solid Tumor Basal-like unc.edu.7953e62d-4871-4928-a2ba-a38c740134e1.1... TCGA-AO-A0JL FEMALE 59 Negative Negative Negative T2 T_Other N2 Positive M0 Negative Stage IIIA No_Conversion followup LIVING 1319 ...
32 Primary solid Tumor Basal-like unc.edu.6d066a72-f59f-45a8-ab90-216000b36da4.1... TCGA-AR-A1AR FEMALE 50 Negative Negative Negative T1 T1 N2 Positive M0 Negative Stage III Stage IIIA enrollment DECEASED [Not Available] ...
33 Primary solid Tumor Basal-like unc.edu.f77e9ef0-0a62-426b-98d9-6813edeb63a5.1... TCGA-B6-A0IJ FEMALE 42 Positive Positive Negative T3 T_Other N0 Negative M0 Negative Stage IIB Stage IIB followup LIVING 5383 ...
34 Primary solid Tumor Basal-like unc.edu.5cd42d4a-5971-4a01-8c10-99321105a864.1... TCGA-AO-A124 FEMALE 38 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 3119 ...
35 Primary solid Tumor Basal-like unc.edu.afe0fbfe-18e0-4b80-a44c-7abe3c7e5c93.1... TCGA-BH-A0AV FEMALE 52 Negative Negative Negative T1 T1 N0 Negative M0 Negative Stage I Stage I enrollment LIVING 1180 ...
36 Primary solid Tumor Basal-like unc.edu.2877059f-b560-413b-b8be-40d9fde8fbcf.1... TCGA-AR-A0TU FEMALE 35 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage II No_Conversion enrollment LIVING 360 ...
37 Primary solid Tumor Basal-like unc.edu.9d04c180-7c23-490e-92cf-c018629b8b7f.1... TCGA-A7-A0DA FEMALE 62 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 373 ...
38 Primary solid Tumor Basal-like unc.edu.1ee60bda-48df-4288-90cb-480fbfbc5d50.1... TCGA-BH-A0HL FEMALE 56 Positive Positive Negative T2 T_Other N1 Positive M0 Negative Stage IIB No_Conversion followup LIVING 72 ...
39 Primary solid Tumor Basal-like unc.edu.b12c9095-55c7-4add-9e22-3d65eeef2040.1... TCGA-C8-A12V FEMALE 55 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 0 ...
40 Primary solid Tumor Basal-like unc.edu.6f0cf450-76f1-489d-9890-5093816c0680.1... TCGA-BH-A0HN FEMALE 67 Positive Positive Negative T1 T1 N0 Negative M0 Negative Stage IA Stage I followup LIVING 516 ...
41 Primary solid Tumor Basal-like unc.edu.0b743ba9-a340-46a0-9276-a5ddd3ee69d6.1... TCGA-A8-A07O FEMALE 51 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 304 ...
42 Primary solid Tumor Basal-like unc.edu.299add94-3b97-41a6-9fd4-c572f88982d5.1... TCGA-AN-A0FL FEMALE 62 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA No_Conversion enrollment LIVING 230 ...
43 Primary solid Tumor Basal-like unc.edu.39ca8590-3733-4b61-9a46-4ec5e6e0501e.1... TCGA-BH-A0BL FEMALE 35 Negative Negative Negative T1 T1 N0 Negative M0 Negative Stage I Stage I enrollment LIVING 1339 ...
44 Primary solid Tumor Basal-like unc.edu.f9739b94-ac64-40d5-bfdd-041a412976c4.1... TCGA-AR-A0TP FEMALE 43 Positive Negative Negative T2 T_Other N0 Negative M0 Negative Stage II No_Conversion enrollment LIVING 2392 ...
45 Primary solid Tumor Basal-like unc.edu.5162ef6d-6978-4ff7-b385-a59325cefe17.1... TCGA-C8-A131 FEMALE 82 Negative Negative Negative T2 T_Other N2 Positive M0 Negative Stage III Stage IIIA enrollment LIVING 0 ...
46 Primary solid Tumor Basal-like unc.edu.4a93eaee-d821-4640-a441-255008aaf3b4.1... TCGA-AO-A128 FEMALE 61 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 2877 ...
47 Primary solid Tumor Basal-like unc.edu.7175b3eb-5198-4d7f-b205-91ae8df344b4.1... TCGA-B6-A0I2 FEMALE 45 Performed but Not Available Performed but Not Available Negative T1 T1 N0 Negative M0 Negative Stage IA Stage I followup LIVING 4360 ...
48 Primary solid Tumor Basal-like unc.edu.98703904-572d-4220-b959-a1293a2e1c33.1... TCGA-AR-A1AJ FEMALE 83 Positive Negative Negative T1 T1 N0 Negative M0 Negative Stage I Stage I enrollment LIVING 1604 ...
49 Primary solid Tumor Basal-like unc.edu.3af60b03-66c3-48a1-a42b-1e05fdb529c4.1... TCGA-A7-A13D FEMALE 46 Negative Positive Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 267 ...
50 Primary solid Tumor Basal-like unc.edu.a09baab9-3eac-4271-9c12-2684642f8869.1... TCGA-AN-A04D FEMALE 58 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB No_Conversion enrollment LIVING 52 ...
51 Primary solid Tumor Basal-like unc.edu.4bf5f56d-448a-426a-8edc-f1bdbf6a8d55.1... TCGA-D8-A143 FEMALE 51 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup LIVING 431 ...
52 Primary solid Tumor Basal-like unc.edu.fac9101c-a974-4415-9eac-d2d433d02b13.1... TCGA-BH-A0E0 FEMALE 38 Negative Negative Negative T3 T_Other N3 Positive M0 Negative Stage IIIC No_Conversion followup LIVING 133 ...
53 Primary solid Tumor Basal-like unc.edu.76a625e9-22b3-42b8-8813-27c133d0b248.1... TCGA-E2-A14R FEMALE 62 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA enrollment LIVING 845 ...
54 Primary solid Tumor Basal-like unc.edu.62dd11c2-2271-45e7-b753-d0f0d79fdf23.1... TCGA-A2-A0CM FEMALE 40 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage IIA Stage IIA followup DECEASED 754 ...
55 Primary solid Tumor Basal-like unc.edu.2b721e04-5452-4b34-b3df-c6cdd04e87b1.1... TCGA-B6-A0RT FEMALE 39 Negative Negative Negative T3 T_Other N1 Positive M0 Negative Stage IIIA No_Conversion followup LIVING 2721 ...
56 Primary solid Tumor Basal-like unc.edu.52ff562f-6a13-435a-acab-16a064633b1d.1... TCGA-AR-A1AI FEMALE 47 Negative Negative Negative T2 T_Other N0 Negative M0 Negative Stage II Stage IIA enrollment LIVING 1881 ...
57 Primary solid Tumor Basal-like unc.edu.d71e12c1-d92c-4cb6-8244-d100b2ef1c43.1... TCGA-A2-A04Q FEMALE 48 Negative Negative Negative T1 T1 N0 Negative M0 Negative Stage IA Stage I followup LIVING 1275 ...
58 Primary solid Tumor Basal-like unc.edu.330bf4ac-9ed5-4bd1-93d0-f89b4f52bc19.1... TCGA-A2-A0YJ FEMALE 39 Positive Negative Negative T3 T_Other N2 Positive M0 Negative Stage IIIA No_Conversion followup LIVING 565 ...
59 Primary solid Tumor Basal-like unc.edu.7f57b9e7-1b1b-4e07-beb4-b877b7651f7b.1... TCGA-A2-A0YE FEMALE 48 Negative Negative Negative T2 T_Other N1 Positive M0 Negative Stage IIB No_Conversion followup LIVING 553 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

919 rows × 33 columns


In [23]:
df[df.Vital_Status == 'DECEASED']['OS_Time'].hist()


Out[23]:
<matplotlib.axes.AxesSubplot at 0x109da4110>

In [24]:
df[df.Vital_Status == 'LIVING']['OS_Time'].hist(hold= True)


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-24-75aa82614dde> in <module>()
----> 1 df[df.Vital_Status == 'LIVING']['OS_Time'].hist(hold= True)

/usr/local/Cellar/python/2.7.6/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/tools/plotting.pyc in hist_series(self, by, ax, grid, xlabelsize, xrot, ylabelsize, yrot, figsize, **kwds)
   2144         values = self.dropna().values
   2145 
-> 2146         ax.hist(values, **kwds)
   2147         ax.grid(grid)
   2148         axes = np.array([ax])

/usr/local/Cellar/python/2.7.6/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/axes.pyc in hist(self, x, bins, range, normed, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, **kwargs)
   8525             if patch:
   8526                 p = patch[0]
-> 8527                 p.update(kwargs)
   8528                 if lbl is not None:
   8529                     p.set_label(lbl)

/usr/local/Cellar/python/2.7.6/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/artist.pyc in update(self, props)
    737             func = getattr(self, 'set_' + k, None)
    738             if func is None or not callable(func):
--> 739                 raise AttributeError('Unknown property %s' % k)
    740             func(v)
    741             changed = True

AttributeError: Unknown property hold

In [25]:
df[df['Vital_Status'] == 'LIVING']['OS_Time'].hist?

In [26]:
df[df['Vital_Status'] == 'LIVING']['OS_Time'].hist


Out[26]:
<bound method Series.hist_series of 1      670
2     1138
4      591
5       10
6      852
7      273
8     2246
9      692
10    1203
11    1643
12     294
13    1350
14    4284
16     775
17     515
...
896    2875
898       0
899      20
900       0
901      21
902       0
904    1228
905      48
907      34
908       0
913     587
914     837
915    1707
916    1187
917    1324
Name: OS_Time, Length: 778, dtype: float64>

In [27]:
df[df['Vital_Status'] == 'LIVING']['OS_Time'].hist


Out[27]:
<bound method Series.hist_series of 1      670
2     1138
4      591
5       10
6      852
7      273
8     2246
9      692
10    1203
11    1643
12     294
13    1350
14    4284
16     775
17     515
...
896    2875
898       0
899      20
900       0
901      21
902       0
904    1228
905      48
907      34
908       0
913     587
914     837
915    1707
916    1187
917    1324
Name: OS_Time, Length: 778, dtype: float64>

In [28]:
df[df.Vital_Status == 'LIVING']['OS_Time'].hist


Out[28]:
<bound method Series.hist_series of 1      670
2     1138
4      591
5       10
6      852
7      273
8     2246
9      692
10    1203
11    1643
12     294
13    1350
14    4284
16     775
17     515
...
896    2875
898       0
899      20
900       0
901      21
902       0
904    1228
905      48
907      34
908       0
913     587
914     837
915    1707
916    1187
917    1324
Name: OS_Time, Length: 778, dtype: float64>

In [29]:
ax = plt.axes()
living_os = np.array(df[df.Vital_Status == 'LIVING']['OS_Time'])
living_os = living_os[living_os > 1825]
print len(living_os)
ax.hist(living_os)
deceased_os = np.array(df[df.Vital_Status == 'DECEASED']['OS_Time'])
deceased_os = deceased_os[deceased_os < 1095]
print len(deceased_os)
ax.hist(deceased_os)


79
42
Out[29]:
(array([ 6.,  2.,  3.,  1.,  5.,  3.,  4.,  6.,  4.,  8.]),
 array([  157. ,   242.1,   327.2,   412.3,   497.4,   582.5,   667.6,
         752.7,   837.8,   922.9,  1008. ]),
 <a list of 10 Patch objects>)

In [30]:
deceased_mask = (df.Vital_Status == 'DECEASED') & (df['OS_Time'] < (3*365))
living_mask = (df.Vital_Status == 'LIVING') & (df['OS_Time'] < (5*365))
deceased_names = df[deceased_mask].name
living_names = df[living_mask].name

In [31]:
rna_df = pd.read_csv('../canseq/tcga/tcga.rnaSeqV2.brca.tau.txt', sep=',')

In [99]:


In [32]:
pat = "unc\.edu\.(.*)\.\d*\.rsem\.genes\.normalized_results"
living_names = [match_group[0] for match_group in living_names.str.match(pat)]
deceased_names = [match_group[0] for match_group in deceased_names.str.match(pat)]


/usr/local/Cellar/python/2.7.6/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/strings.py:367: UserWarning: In future versions of pandas, match will change to always return a bool indexer.
  " always return a bool indexer.""", UserWarning)

In [33]:
living_rsem = rna_df.ix[:, living_names]
deceased_rsem = rna_df.ix[:, deceased_names]

In [34]:
deceased_rsem


Out[34]:
a63583ca-0ef2-4417-b435-5f3a6951d0c2 6d066a72-f59f-45a8-ab90-216000b36da4 62dd11c2-2271-45e7-b753-d0f0d79fdf23 09c248f8-cdd7-4c13-9085-26c56544bcf7 357ba9f6-716c-4ef0-8ac8-41977397dbf5 491c6c41-d1c5-4be7-bb7c-9df7275aa388 d31b476c-c047-4e5f-a0cb-eff1065f0121 8dc04505-fae5-4185-b3f8-53882fbbb4fd 889f6f61-9b3a-406c-9af8-ddee74a8a19e 4dac7a33-db46-4815-8c6c-fb326959c741 0b3c65ed-ff55-45c9-b6a3-dd3a596a0271 3b48796b-8591-4d7a-a502-5c4293647156 8fb338fe-ffa8-45c2-857b-f713d1935330 1a99c4ba-6948-4054-96cd-62164ff4a6f0 f97f68be-6838-455c-91bf-7549543a82c3 08236177-a046-4cfe-a11c-a24292a1f777 7b234c36-729b-422d-8e2a-ebd42af74bce 89f9e509-5f4c-439b-b610-860f209332d2 733890d7-6557-454e-8697-fe9c619874e3 c71ca9f7-248f-460c-b5d3-afb2c648fef2
100130426 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
100133144 4.359073e-06 5.108017e-07 1.734503e-06 2.659838e-06 5.249666e-08 1.144935e-06 5.792443e-07 7.972724e-08 4.868381e-07 8.321021e-07 9.119847e-07 2.314170e-06 5.639532e-07 2.314428e-06 3.616698e-07 5.063103e-07 1.281190e-06 2.197569e-06 6.442920e-07 5.094094e-07 ...
100134869 1.797453e-06 1.419259e-07 2.446509e-07 7.656375e-07 1.073556e-07 2.433461e-07 2.621854e-07 4.108058e-07 2.440426e-07 4.593287e-07 3.333725e-07 6.038682e-07 2.341821e-07 9.487183e-07 1.398782e-07 1.694214e-07 5.209550e-07 9.264722e-07 1.204358e-06 3.611131e-07 ...
10357 2.248426e-04 1.366804e-05 4.765121e-05 2.867874e-05 2.356971e-05 1.661132e-05 2.167340e-05 1.086382e-05 2.098130e-05 4.710670e-05 2.130732e-05 3.125738e-05 1.392086e-05 2.529897e-05 1.458849e-05 1.946973e-05 2.479213e-05 1.140481e-05 2.720707e-05 1.460284e-05 ...
10431 9.821766e-05 1.366488e-04 1.313625e-04 8.088577e-05 1.435102e-04 1.798669e-04 8.295820e-05 1.218280e-04 6.354504e-05 7.600721e-05 7.134431e-05 7.861641e-05 9.317366e-05 1.018602e-04 7.090746e-05 4.682867e-05 6.708020e-05 8.406468e-05 2.001179e-04 8.403933e-05 ...
136542 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
155060 5.381789e-06 3.295121e-06 4.123380e-06 5.382254e-06 5.307697e-06 2.032588e-06 3.891341e-06 3.842630e-06 6.083398e-06 2.007006e-06 6.742844e-06 7.279470e-06 4.012338e-06 5.914379e-06 4.569233e-06 4.027347e-06 5.941460e-06 2.518442e-06 3.804135e-06 1.358719e-05 ...
26823 7.997161e-08 6.122452e-08 0.000000e+00 1.143710e-07 6.228845e-08 1.450217e-07 1.067934e-07 0.000000e+00 7.122398e-08 9.151405e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 8.191813e-07 0.000000e+00 1.288122e-07 3.528681e-07 7.094503e-08 1.572220e-07 ...
280660 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
317712 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
340602 9.537459e-08 1.306792e-08 0.000000e+00 6.966527e-08 0.000000e+00 0.000000e+00 3.991958e-07 1.657443e-08 0.000000e+00 0.000000e+00 1.663615e-08 0.000000e+00 0.000000e+00 1.553388e-08 0.000000e+00 0.000000e+00 2.908395e-07 1.773010e-07 0.000000e+00 0.000000e+00 ...
388795 0.000000e+00 1.811013e-08 4.409498e-08 2.130224e-08 4.242854e-08 0.000000e+00 3.061342e-08 7.652259e-09 3.376417e-08 4.183743e-08 7.718815e-09 2.001517e-08 0.000000e+00 4.274398e-08 3.971697e-08 3.468972e-08 3.643769e-08 1.218143e-07 0.000000e+00 1.321752e-07 ...
390284 2.265727e-06 1.982668e-06 2.754884e-06 1.143399e-06 1.610436e-06 1.978470e-06 2.067312e-06 7.217063e-07 3.133805e-06 4.463056e-06 4.352816e-06 9.736118e-06 2.294900e-06 1.346113e-06 6.326031e-06 2.328709e-06 3.500484e-06 2.024853e-06 3.178439e-06 4.702231e-06 ...
391343 0.000000e+00 0.000000e+00 2.213372e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.532157e-08 8.486747e-09 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.923120e-07 0.000000e+00 0.000000e+00 2.442408e-08 3.274304e-08 1.380738e-08 1.846446e-08 ...
391714 0.000000e+00 1.851463e-08 0.000000e+00 3.308381e-08 0.000000e+00 0.000000e+00 0.000000e+00 2.349285e-08 0.000000e+00 2.609359e-08 2.349050e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.692853e-08 1.881166e-08 0.000000e+00 4.239708e-08 6.838034e-08 ...
404770 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
441362 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
442388 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
553137 1.212170e-08 3.002717e-08 3.846576e-07 1.773101e-08 8.047412e-08 1.913949e-07 6.426757e-06 1.269170e-08 8.982029e-08 1.255212e-07 7.659812e-08 0.000000e+00 2.006848e-08 1.091142e-06 0.000000e+00 4.330652e-08 1.010092e-07 1.352961e-08 8.002858e-08 9.777204e-08 ...
57714 3.250660e-06 1.556926e-05 2.873718e-05 9.817471e-06 5.649482e-06 2.740873e-06 3.372504e-05 5.966974e-06 5.358180e-06 1.482250e-05 1.142220e-05 3.849033e-05 4.410800e-06 4.082212e-05 2.426864e-05 1.334215e-05 1.851917e-05 3.339261e-05 1.658388e-05 6.109519e-05 ...
645851 1.441191e-06 1.151064e-06 1.706330e-06 1.073576e-06 1.661732e-07 3.784814e-07 1.015981e-06 1.295122e-06 8.997917e-07 9.074522e-06 2.770959e-06 1.765862e-06 3.306793e-07 1.796060e-06 1.745376e-07 1.019064e-06 3.245160e-06 1.143071e-06 1.890383e-06 2.176159e-06 ...
652919 7.788417e-07 2.253626e-06 3.904365e-07 9.935949e-150 0.000000e+00 0.000000e+00 7.224712e-07 0.000000e+00 3.248664e-246 6.590450e-07 0.000000e+00 0.000000e+00 0.000000e+00 6.230535e-07 1.634749e-07 1.376514e-06 3.670379e-06 8.562843e-07 3.144294e-07 1.127500e-06 ...
653553 3.285515e-05 2.547867e-05 1.165507e-04 4.354101e-05 1.711455e-04 1.186159e-04 3.137461e-05 8.709508e-05 6.219671e-05 4.144862e-05 1.283304e-04 2.694074e-05 7.749701e-05 1.611846e-04 8.859075e-05 3.868928e-05 4.316962e-05 1.595772e-04 2.911976e-05 2.622019e-04 ...
728045 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
728603 4.431107e-07 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 8.891667e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
728788 1.416840e-07 0.000000e+00 0.000000e+00 1.365386e-07 0.000000e+00 4.331671e-08 1.934039e-07 9.522179e-08 5.141924e-07 0.000000e+00 0.000000e+00 1.961748e-07 0.000000e+00 0.000000e+00 0.000000e+00 5.553813e-08 7.730470e-08 5.238604e-08 0.000000e+00 4.698608e-08 ...
729884 1.978950e-07 0.000000e+00 1.066438e-07 0.000000e+00 1.545384e-06 7.871559e-07 4.936490e-08 1.329061e-07 2.876937e-07 3.252188e-08 4.451144e-07 1.363495e-07 6.538683e-07 1.382144e-07 9.209250e-08 1.177490e-07 2.000324e-07 5.677738e-07 1.463743e-07 0.000000e+00 ...
8225 2.921617e-05 1.064089e-05 2.429716e-05 2.604782e-05 1.994005e-05 2.299334e-05 2.661818e-05 3.802856e-05 3.697443e-05 2.742563e-05 4.298507e-05 2.503190e-05 1.925500e-05 6.959719e-05 3.907856e-05 3.245595e-05 1.784818e-05 1.859660e-05 2.987891e-05 2.743556e-05 ...
90288 3.221127e-07 2.076973e-07 1.056696e-07 6.141770e-08 1.276096e-07 2.599759e-07 8.804485e-08 1.126752e-06 4.146337e-07 4.543313e-06 2.602503e-06 3.280722e-07 4.165219e-07 5.888616e-07 1.672979e-07 6.666729e-07 1.224174e-06 2.265814e-06 2.109689e-07 8.183827e-07 ...
1 4.623308e-06 1.992749e-06 2.532690e-06 3.451246e-06 2.853227e-06 1.755374e-05 2.285745e-06 7.315108e-06 2.716170e-06 7.434529e-06 8.674235e-06 8.208854e-06 1.766158e-06 4.279792e-06 1.549980e-06 2.048380e-06 2.311181e-06 1.120480e-05 2.671145e-06 5.512144e-06 ...
29974 0.000000e+00 1.178847e-08 0.000000e+00 2.092095e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 4.939561e-08 0.000000e+00 1.972397e-08 0.000000e+00 4.146431e-08 0.000000e+00 0.000000e+00 0.000000e+00 3.193868e-08 7.113854e-08 0.000000e+00 ...
54715 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 5.039523e-09 1.511694e-08 3.957278e-08 0.000000e+00 1.524922e-08 6.918674e-08 0.000000e+00 0.000000e+00 0.000000e+00 8.245623e-09 7.797662e-08 5.614525e-08 0.000000e+00 0.000000e+00 ...
87769 2.362049e-05 3.436414e-06 1.562620e-06 3.084435e-06 2.964923e-06 4.106002e-06 4.393369e-06 3.720113e-06 4.883882e-06 2.330275e-06 4.666835e-06 4.854836e-06 2.863985e-06 5.050402e-06 5.871178e-06 4.192135e-06 3.321476e-06 1.635261e-06 8.513547e-07 5.393251e-06 ...
144568 5.134527e-07 6.481258e-07 1.968846e-05 5.156069e-07 2.084420e-05 5.924791e-06 6.933368e-08 2.954825e-06 2.918244e-08 2.649586e-06 2.625219e-06 5.744547e-08 1.457077e-06 3.737655e-08 1.199773e-05 5.970524e-08 2.334703e-06 2.124109e-07 1.976916e-04 1.408846e-07 ...
2 1.206022e-04 3.539427e-04 2.624673e-04 3.059584e-04 2.101238e-04 3.298680e-04 6.294977e-04 4.767124e-04 8.651702e-04 2.151259e-04 3.017445e-04 2.147139e-04 2.881606e-04 2.078783e-04 5.711173e-04 6.729542e-04 9.022020e-04 2.206301e-04 1.404131e-04 2.476410e-04 ...
53947 3.659576e-06 4.657289e-06 6.197037e-06 4.720960e-05 3.473165e-06 5.060608e-06 1.419854e-05 1.355006e-05 1.754860e-05 9.999308e-06 5.675277e-06 3.348795e-06 4.801539e-06 4.454723e-06 3.925246e-06 1.039556e-05 9.756347e-06 1.312311e-05 1.225137e-06 1.400156e-05 ...
51146 3.483216e-08 7.146286e-08 5.243371e-08 3.560150e-07 0.000000e+00 0.000000e+00 7.281796e-08 9.064733e-08 2.251300e-07 1.001478e-07 0.000000e+00 2.401065e-08 0.000000e+00 6.804480e-08 3.770924e-08 2.070084e-07 5.789198e-08 9.710302e-08 0.000000e+00 0.000000e+00 ...
404744 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 3.757447e-08 0.000000e+00 0.000000e+00 0.000000e+00 ...
8086 5.400690e-05 2.042712e-05 2.826705e-05 2.811134e-05 2.168992e-05 2.155724e-05 2.172080e-05 2.162326e-05 2.498475e-05 4.057236e-05 3.827363e-05 4.032175e-05 2.633969e-05 4.158594e-05 4.638581e-05 2.610507e-05 2.683204e-05 3.741199e-05 2.782877e-05 3.632141e-05 ...
729522 1.387683e-08 3.288734e-07 2.094259e-08 0.000000e+00 8.671194e-09 0.000000e+00 8.044996e-08 0.000000e+00 1.283979e-08 0.000000e+00 2.206047e-08 0.000000e+00 0.000000e+00 3.405793e-06 3.941202e-07 3.303034e-08 0.000000e+00 0.000000e+00 3.760013e-07 1.398170e-08 ...
65985 7.176978e-05 1.682350e-05 1.905693e-05 2.404367e-05 1.697232e-05 2.576174e-05 2.333984e-05 1.178101e-05 2.039660e-05 1.596567e-05 1.319579e-05 3.469523e-05 2.604047e-05 2.183670e-05 8.004885e-05 4.038406e-05 3.232480e-05 4.174455e-05 3.132338e-05 3.061446e-05 ...
344752 5.466589e-07 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.354455e-08 1.235483e-07 0.000000e+00 4.681374e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.062433e-07 0.000000e+00 0.000000e+00 0.000000e+00 ...
126767 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 5.281223e-09 0.000000e+00 6.597242e-09 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.693237e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
343066 1.991800e-08 0.000000e+00 2.992905e-08 0.000000e+00 1.640506e-08 0.000000e+00 0.000000e+00 0.000000e+00 3.672709e-08 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ...
13 0.000000e+00 1.019858e-06 0.000000e+00 0.000000e+00 0.000000e+00 4.868117e-07 9.480625e-08 1.617264e-07 7.179854e-08 2.014270e-07 6.075097e-08 0.000000e+00 0.000000e+00 0.000000e+00 1.682583e-07 1.155884e-07 6.301463e-07 0.000000e+00 0.000000e+00 7.827640e-08 ...
51166 1.754104e-05 7.750855e-07 1.034564e-05 4.554675e-06 1.614082e-06 6.572625e-07 1.355741e-06 3.134349e-06 3.173922e-06 7.847575e-07 1.651564e-05 1.595833e-06 4.488197e-07 4.748858e-07 1.399758e-06 2.390292e-06 7.965851e-06 1.723537e-07 1.251349e-05 7.134686e-07 ...
79719 6.414559e-05 4.275895e-05 2.571267e-05 3.631867e-05 9.772432e-06 2.915194e-05 3.284310e-05 2.556556e-05 3.360114e-05 4.671382e-05 3.324072e-05 9.087091e-05 8.892603e-05 6.282623e-05 5.370893e-05 2.045309e-05 4.061970e-05 5.859704e-05 4.029410e-05 6.890680e-05 ...
22848 5.390292e-06 1.839766e-05 8.190292e-06 1.003008e-05 1.818350e-06 5.470124e-06 1.249076e-05 1.234715e-05 9.541662e-06 1.791499e-05 1.064033e-05 2.068229e-05 6.802703e-06 1.625221e-05 6.229031e-06 1.263973e-05 1.649746e-05 1.248004e-05 1.234283e-05 1.465132e-05 ...
14 8.485792e-05 7.295397e-05 1.147752e-04 8.737947e-05 7.319146e-05 8.475771e-05 1.001114e-04 1.314327e-04 1.024809e-04 9.251664e-05 1.800862e-04 1.399536e-04 1.859392e-04 1.416749e-04 1.044788e-04 9.648713e-05 6.569627e-05 1.540437e-04 1.649805e-04 1.405399e-04 ...
15 0.000000e+00 6.262418e-08 0.000000e+00 1.133866e-07 8.837683e-08 9.422956e-08 5.369143e-08 0.000000e+00 6.232851e-08 0.000000e+00 7.882910e-08 0.000000e+00 0.000000e+00 3.311470e-08 2.907989e-07 4.612890e-08 0.000000e+00 7.579324e-08 7.196107e-08 0.000000e+00 ...
57505 6.644244e-06 7.867412e-06 8.860626e-06 6.312502e-06 7.522720e-06 1.152077e-05 8.807854e-06 5.910472e-06 6.697813e-06 9.489051e-06 1.170830e-05 1.216589e-05 8.896154e-06 1.566584e-05 5.259441e-06 5.488663e-06 5.758484e-06 8.783840e-06 7.439318e-06 1.069291e-05 ...
80755 3.292233e-05 1.633661e-05 4.239107e-05 2.891128e-05 2.490836e-05 2.916562e-05 5.881798e-05 3.595555e-05 3.176734e-05 4.462145e-05 2.843981e-05 3.530867e-05 3.538068e-05 1.942200e-05 1.808740e-05 3.043285e-05 2.866304e-05 4.416695e-05 3.163806e-05 4.627620e-05 ...
16 7.954391e-05 4.851268e-05 1.408186e-04 2.110450e-04 3.752954e-05 5.677418e-05 7.787435e-05 6.888558e-05 6.367174e-05 7.393211e-05 1.500594e-04 6.922170e-05 1.048632e-04 2.409716e-04 8.917113e-05 6.387113e-05 5.877557e-05 1.866216e-04 1.028807e-04 6.374216e-05 ...
60496 5.308244e-05 5.152102e-05 2.429585e-05 4.463740e-05 1.094191e-05 1.378654e-05 3.394533e-05 1.965162e-05 2.955369e-05 3.125715e-05 1.961552e-05 2.806767e-05 2.054099e-05 2.122998e-05 2.082407e-05 2.512662e-05 3.615451e-05 2.194131e-05 4.028403e-05 5.006279e-05 ...
132949 7.474610e-06 1.418511e-05 5.053437e-06 9.172523e-06 3.028027e-06 2.652357e-06 1.041219e-05 6.046397e-06 1.120017e-05 1.013133e-05 6.187154e-06 1.184710e-05 4.006096e-06 9.491157e-06 5.922073e-06 1.013668e-05 1.598537e-05 9.633630e-06 6.465200e-06 5.850760e-06 ...
10157 8.348270e-07 2.463061e-06 1.650513e-06 1.078799e-06 2.026176e-06 8.117191e-07 3.436024e-06 2.584399e-06 1.255668e-05 1.852908e-06 1.440596e-06 5.140390e-06 2.501438e-06 1.812997e-06 1.189560e-06 2.034966e-05 1.945499e-05 1.252911e-06 1.942100e-06 9.293850e-07 ...
26574 7.669591e-05 3.078812e-05 6.435018e-05 3.987809e-05 1.930206e-05 5.273333e-05 6.848045e-05 6.383621e-05 4.529864e-05 3.183521e-05 8.141137e-05 5.830224e-05 3.831710e-05 3.328468e-04 5.258589e-05 3.305213e-05 3.074732e-05 1.177600e-04 1.085006e-04 7.280831e-05 ...
9625 1.087188e-06 4.384394e-07 3.302347e-07 2.703765e-06 7.357584e-07 5.371093e-07 6.572137e-07 1.656648e-06 8.373700e-07 6.366919e-07 1.352137e-06 1.272023e-06 1.761870e-06 3.363866e-07 3.167213e-07 6.092035e-07 3.950688e-07 6.280597e-07 6.890529e-07 1.102125e-06 ...
18 1.078774e-06 1.704097e-06 1.494676e-06 1.390386e-06 6.330194e-07 1.180213e-06 2.929787e-06 2.818772e-06 9.688310e-06 3.013363e-05 5.343732e-06 2.462633e-05 5.914198e-06 7.481296e-06 2.158414e-06 8.619755e-06 1.293650e-05 1.490164e-05 5.508002e-07 1.102350e-05 ...
10349 8.923781e-08 4.256044e-07 2.550588e-07 1.926456e-07 8.307990e-07 5.990535e-08 1.731684e-06 8.176846e-07 8.089481e-06 3.813757e-08 3.385560e-07 3.387040e-07 1.366422e-07 3.205415e-07 1.738000e-07 5.265119e-06 1.474915e-05 7.410228e-08 2.936464e-08 5.982439e-07 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

20531 rows × 42 columns


In [35]:
genes = pd.read_csv('../canseq/tcga/entrez_immune_genes.csv', sep=',', index_col=0)

In [36]:
genes


Out[36]:
Name
EntrezID
6351 CCL4
6352 CCL5
2920 CXCL2
4283 CXCL9
3627 CXCL10
4818 NKG7
3001 GZMA
3002 GZMB
5551 PRF1
6772 STAT1
30001 TBX21
915 CD3D
925 CD8A

13 rows × 1 columns


In [37]:
deceased_rsem.merge?

In [38]:
deceased_rsem_immune = deceased_rsem.merge(genes, left_index=True, right_index=True)

In [39]:
deceased_rsem_immune.index = [str(genes.ix[idx].Name) for idx in deceased_rsem_immune.index]

In [40]:
living_rsem.join(genes, how='inner')


Out[40]:
4d12d021-3673-4e14-9fd9-033f811f87da 3e57b40c-7079-4f05-bf37-f560304966c1 46262a6c-8a11-4bb9-8851-8b6e44c95288 c1dc3f35-324b-4a69-b32c-24652ccf9e3a e3b4918d-43c1-4dde-9a92-f9c5cd6e63a0 ce045098-cbfb-4c73-9bbe-6a1d677ae0b0 d9f827bb-2498-49b0-aa85-71cb554eb926 6d2744ba-4817-482b-ad46-2e4e0897ad88 920e47c0-1b19-46e6-b1db-b5fd95e44df0 4808bc63-000a-4a49-a25b-4b817ca5ea54 6e45dd01-225d-4871-9a3a-f591808ad234 1fe98b05-6803-4803-83cd-a59e794b956e 95c7abfa-a417-4d81-96c2-a952a081d997 74cba80b-7677-41d6-ab22-10f1a962ba2f 2ad8d416-08a4-4e6f-947e-d74269d02ab1 9f440cd6-d55f-4cb6-a433-637ef1f9d38f a8a7a335-8e21-4f24-b48b-8764caa21329 43326f71-c61c-410b-af4b-c71a054e27c9 dea20128-b180-4da1-9da5-0f00bea3b1ab c09e8a88-5a82-4fd6-8d03-ef3ecb988003
6351 0.000004 0.000014 0.000016 0.000008 0.000013 0.000008 0.000027 0.000047 0.000088 0.000023 0.000025 0.000072 0.000038 0.000055 0.000021 0.000014 0.000009 3.491277e-06 0.000050 0.000018 ...
6352 0.000011 0.000114 0.000081 0.000018 0.000017 0.000059 0.000067 0.000123 0.000395 0.000079 0.000144 0.000258 0.000174 0.000081 0.000129 0.000041 0.000022 1.027848e-05 0.000488 0.000023 ...
2920 0.000000 0.000003 0.000005 0.000002 0.000001 0.000001 0.000001 0.000001 0.000022 0.000001 0.000020 0.000001 0.000005 0.000002 0.000006 0.000002 0.000003 5.118764e-08 0.000001 0.000003 ...
4283 0.000004 0.000078 0.000254 0.000015 0.000059 0.000003 0.000135 0.000141 0.000466 0.000259 0.000063 0.000032 0.000373 0.000146 0.000074 0.000046 0.000004 5.225933e-05 0.000109 0.000064 ...
3627 0.000012 0.000276 0.000280 0.000024 0.000068 0.000052 0.000042 0.000224 0.000478 0.000469 0.000415 0.000154 0.000138 0.000217 0.000079 0.000033 0.000011 4.474604e-05 0.001568 0.000058 ...
4818 0.000003 0.000032 0.000008 0.000006 0.000003 0.000002 0.000020 0.000018 0.000127 0.000022 0.000012 0.000058 0.000044 0.000025 0.000029 0.000009 0.000006 2.068295e-06 0.000069 0.000008 ...
3001 0.000002 0.000021 0.000006 0.000005 0.000003 0.000001 0.000017 0.000010 0.000082 0.000017 0.000010 0.000055 0.000054 0.000032 0.000020 0.000008 0.000008 1.555396e-06 0.000047 0.000007 ...
3002 0.000002 0.000022 0.000006 0.000002 0.000004 0.000002 0.000005 0.000025 0.000044 0.000014 0.000008 0.000046 0.000056 0.000037 0.000035 0.000003 0.000006 1.838088e-06 0.000082 0.000008 ...
5551 0.000001 0.000009 0.000002 0.000002 0.000001 0.000000 0.000004 0.000005 0.000025 0.000007 0.000002 0.000022 0.000017 0.000012 0.000008 0.000003 0.000002 6.036557e-07 0.000023 0.000006 ...
6772 0.000040 0.000137 0.000204 0.000073 0.000179 0.000596 0.000086 0.000475 0.000467 0.000307 0.000355 0.000273 0.000175 0.000488 0.000068 0.000079 0.000034 1.074429e-04 0.000793 0.000110 ...
30001 0.000006 0.000021 0.000049 0.000015 0.000016 0.000026 0.000006 0.000035 0.000019 0.000023 0.000036 0.000029 0.000060 0.000135 0.000016 0.000018 0.000028 1.239100e-05 0.000034 0.000030 ...
915 0.000002 0.000079 0.000012 0.000005 0.000004 0.000001 0.000038 0.000020 0.000111 0.000038 0.000016 0.000025 0.000034 0.000015 0.000024 0.000011 0.000005 2.851724e-06 0.000036 0.000006 ...
925 0.000002 0.000019 0.000004 0.000003 0.000004 0.000001 0.000010 0.000007 0.000047 0.000009 0.000005 0.000019 0.000025 0.000008 0.000010 0.000007 0.000002 3.112513e-06 0.000026 0.000002 ...

13 rows × 700 columns


In [41]:
def extract_immune_genes(df, genes):
    merged = df.join(genes, how='inner')
    merged.index = merged.Name
    return merged.drop('Name', axis=1).T

In [42]:
deceased_immune_rsem = extract_immune_genes(deceased_rsem, genes)
living_immune_rsem = extract_immune_genes(living_rsem, genes)

In [42]:


In [43]:
def overlay_histograms(good, bad):
    ax = plt.axes()
    ax.hist(np.array(good), normed=True)
    ax.hist(np.array(bad), normed=True)
    ax.legend(('Good', 'Bad'))

In [44]:
overlay_histograms(living_immune_rsem.STAT1, deceased_immune_rsem.STAT1)



In [ ]: