In [4]:
pd.read_csv

In [1]:
df = pd.read_excel('AVM.xlsx', skiprows = 12)
df


/usr/local/Cellar/python/2.7.6/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/xlrd/xlsx.py:246: PendingDeprecationWarning: This method will be removed in future versions.  Use 'tree.iter()' or 'list(tree.iter())' instead.
  for elem in self.tree.getiterator():
/usr/local/Cellar/python/2.7.6/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/xlrd/xlsx.py:292: PendingDeprecationWarning: This method will be removed in future versions.  Use 'tree.iter()' or 'list(tree.iter())' instead.
  for elem in self.tree.getiterator():
Out[1]:
VA12 1 Unnamed: 2 2 29.2191780822 0 0.1 0.2 Unnamed: 8 Unnamed: 9 ... 1.11 Unnamed: 55 0.10 0.11 Unnamed: 58 Unnamed: 59 1.49438356164 2.3 2.4 4.2
0 VA13 1 NaN 1 29.630137 0 0 0 NaN NaN ... 0 3 1 2 NaN NaN 1.272603 2 2 2
1 VA14 1 NaN 2 45.589041 0 0 0 NaN NaN ... 1 NaN 2 NaN NaN NaN 1.331781 2 2 3
2 VA15 1 NaN 2 44.065753 0 0 0 NaN NaN ... NaN 2 NaN NaN NaN 0.951315 1 0 0
3 VA16 1 NaN 2 36.671233 0 0 0 NaN NaN ... 1 NaN 2 0 NaN NaN 0.843425 1 0 1
4 VA17 1 NaN 1 28.210959 1 1 1 NaN 1 ... 1 NaN NaN NaN NaN NaN 0.924219 1 1 1
5 VA18 1 NaN 2 81.753425 0 0 0 NaN NaN ... 1 NaN NaN NaN NaN NaN 1.815068 3 0 0
6 VA19 1 NaN 1 47.956164 0 0 0 NaN NaN ... 1 NaN NaN NaN NaN NaN 1.439123 2 2 2
7 VA20 1 NaN 1 42.758904 0 0 0 NaN NaN ... 0 3 1 0 NaN NaN 1.555178 3 2 2
8 VA21 1 NaN 2 14.008219 0 1 1 NaN 1 ... 1 NaN NaN NaN NaN NaN 0.370164 1 0 1
9 VA22 1 NaN 2 53.131507 0 0 0 NaN NaN ... 1 NaN 1 2 NaN NaN 1.352630 2 1 2
10 VA23 1 NaN 2 24.602740 0 0 0 NaN NaN ... 1 NaN 3 5 NaN NaN 0.852055 1 1 1
11 VA24 1 NaN 1 38.624658 0 1 1 1 2 ... 0 2 0 NaN NaN NaN 1.582493 3 2 2
12 VA25 1 NaN 2 30.180822 0 0 0 NaN NaN ... 0 3 3 NaN NaN NaN 0.903616 1 1 1
13 VA26 1 NaN 1 64.602740 0 0 0 NaN NaN ... 0 2 0 0 NaN NaN 1.392055 2 0 1
14 VA27 1 NaN 2 26.295890 0 0 0 NaN NaN ... 1 NaN 1 NaN NaN NaN 0.725918 1 1 2
15 VA28 1 NaN 1 48.087671 0 0 0 NaN NaN ... NaN NaN 1 NaN NaN NaN 1.271753 2 1 2
16 VA29 1 NaN 2 22.361644 1 0 0 NaN NaN ... 1 NaN 0 0 NaN NaN 0.567233 1 0 1
17 VA30 1 NaN 2 33.054795 0 1 1 2 1 ... NaN 0 0 NaN NaN 1.131096 2 2 2
18 VA31 1 NaN 2 16.783562 0 1 1 1 1 ... 0 2 1 2 NaN NaN 0.865671 1 2 2
19 VA32 1 NaN 1 37.868493 0 0 0 NaN NaN ... NaN 2 NaN NaN NaN 0.927370 1 0 1
20 VA33 1 NaN 2 42.342466 1 1 1 1 1 ... 0 NaN NaN 3 NaN NaN 1.386849 2 2 2
21 VA34 1 NaN 1 34.753425 0 1 1 1 1 ... NaN 1 1 NaN NaN 1.235068 2 2 2
22 VA35 1 NaN 1 54.890411 0 0 0 NaN NaN ... NaN NaN 0 0 NaN NaN 1.417808 2 1 2
23 VA36 1 NaN 1 25.769863 0 1 1 NaN NaN ... 1 NaN NaN NaN NaN NaN 0.645397 1 0 1
24 VA37 1 NaN 2 43.630137 0 1 1 1 1 ... 1 NaN 3 3 NaN NaN 1.492603 2 2 2
25 VA38 1 NaN 1 23.876712 0 0 0 NaN NaN ... NaN 0 NaN NaN NaN 0.777534 1 1 2
26 VA39 1 NaN 1 27.219178 0 0 0 NaN NaN ... 0 NaN 0 3 NaN NaN 1.064384 2 2 2
27 VA40 1 NaN 2 56.432877 0 0 0 NaN NaN ... NaN NaN 0 NaN NaN NaN 1.638658 3 2 3
28 VA41 1 NaN 2 53.578082 0 1 3 NaN NaN ... 1 NaN 0 NaN NaN NaN 1.281562 2 1 1
29 VA42 1 NaN 2 24.189041 0 1 2 1 2 ... 0 NaN 3 NaN NaN NaN 0.583781 1 0 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1768 PA771 2 916 1 57.100000 1 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 1.262000 NaN 0 1
1769 PA772 2 917 2 31.500000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 0 0 0.920000 NaN 1 1
1770 PA773 2 918 1 60.000000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 0 0 1.370000 NaN 0 0
1771 PA774 2 919 2 22.700000 0 1 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.694000 NaN 2 2
1772 PA775 2 920 1 62.300000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 1 3 1.752800 NaN 2 3
1773 PA776 2 921 2 58.300000 1 0 NaN NaN NaN ... NaN NaN 0 NaN 1 3 1.692800 NaN 0 1
1774 PA777 2 922 2 56.100000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 2.034000 NaN 2 3
1775 PA778 2 923 2 77.000000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 2.102000 NaN 0 1
1776 PA779 2 924 2 61.200000 1 1 NaN NaN NaN ... NaN NaN 0 NaN 0 0 1.544000 NaN 1 2
1777 PA780 2 925 2 60.100000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 1 2.226900 NaN 2 3
1778 PA781 2 926 2 22.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 1.056000 NaN 0 1
1779 PA782 2 927 1 44.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 1.486000 NaN 2 2
1780 PA783 2 928 1 23.500000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 1.410000 NaN 2 2
1781 PA784 2 929 1 49.000000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.065000 NaN 0 0
1782 PA785 2 930 2 70.000000 0 0 NaN NaN NaN ... NaN NaN 1 NaN 0 0 1.650000 NaN 1 2
1783 PA786 2 931 1 74.700000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 1.784000 NaN 1 2
1784 PA787 2 932 2 42.400000 0 0 NaN NaN NaN ... NaN NaN 1 NaN 0 0 1.058000 NaN 1 1
1785 PA788 2 933 1 16.800000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 0 0 0.646000 NaN 1 1
1786 PA789 2 934 1 73.100000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 2.092000 NaN 2 3
1787 PA790 2 935 2 56.700000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 1 1.309900 NaN 0 0
1788 PA791 2 936 1 65.800000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 1 1 2.004500 NaN 0 1
1789 PA792 2 937 1 65.300000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.888000 NaN 2 2
1790 PA793 2 938 1 38.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.256000 NaN 2 3
1791 PA794 2 939 2 27.400000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 0 0 1.591700 NaN 2 3
1792 PA795 2 940 1 49.600000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 0 0 1.312000 NaN 1 1
1793 PA796 2 941 1 11.400000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 2 0.858000 NaN 0 1
1794 PA797 2 942 1 77.700000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 1.631000 NaN 0 1
1795 PA798 2 943 2 33.600000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 1 1.339000 NaN 0 1
1796 PA799 2 944 1 56.200000 1 0 NaN NaN NaN ... NaN NaN 3 NaN 1 3 2.264000 NaN 2 3
1797 PA800 2 945 2 35.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 0.860000 NaN 0 1

1798 rows × 64 columns


In [4]:
df


Out[4]:
VA12 1 Unnamed: 2 2 29.2191780822 0 0.1 0.2 Unnamed: 8 Unnamed: 9 ... 1.11 Unnamed: 55 0.10 0.11 Unnamed: 58 Unnamed: 59 1.49438356164 2.3 2.4 4.2
0 VA13 1 NaN 1 29.630137 0 0 0 NaN NaN ... 0 3 1 2 NaN NaN 1.272603 2 2 2
1 VA14 1 NaN 2 45.589041 0 0 0 NaN NaN ... 1 NaN 2 NaN NaN NaN 1.331781 2 2 3
2 VA15 1 NaN 2 44.065753 0 0 0 NaN NaN ... NaN 2 NaN NaN NaN 0.951315 1 0 0
3 VA16 1 NaN 2 36.671233 0 0 0 NaN NaN ... 1 NaN 2 0 NaN NaN 0.843425 1 0 1
4 VA17 1 NaN 1 28.210959 1 1 1 NaN 1 ... 1 NaN NaN NaN NaN NaN 0.924219 1 1 1
5 VA18 1 NaN 2 81.753425 0 0 0 NaN NaN ... 1 NaN NaN NaN NaN NaN 1.815068 3 0 0
6 VA19 1 NaN 1 47.956164 0 0 0 NaN NaN ... 1 NaN NaN NaN NaN NaN 1.439123 2 2 2
7 VA20 1 NaN 1 42.758904 0 0 0 NaN NaN ... 0 3 1 0 NaN NaN 1.555178 3 2 2
8 VA21 1 NaN 2 14.008219 0 1 1 NaN 1 ... 1 NaN NaN NaN NaN NaN 0.370164 1 0 1
9 VA22 1 NaN 2 53.131507 0 0 0 NaN NaN ... 1 NaN 1 2 NaN NaN 1.352630 2 1 2
10 VA23 1 NaN 2 24.602740 0 0 0 NaN NaN ... 1 NaN 3 5 NaN NaN 0.852055 1 1 1
11 VA24 1 NaN 1 38.624658 0 1 1 1 2 ... 0 2 0 NaN NaN NaN 1.582493 3 2 2
12 VA25 1 NaN 2 30.180822 0 0 0 NaN NaN ... 0 3 3 NaN NaN NaN 0.903616 1 1 1
13 VA26 1 NaN 1 64.602740 0 0 0 NaN NaN ... 0 2 0 0 NaN NaN 1.392055 2 0 1
14 VA27 1 NaN 2 26.295890 0 0 0 NaN NaN ... 1 NaN 1 NaN NaN NaN 0.725918 1 1 2
15 VA28 1 NaN 1 48.087671 0 0 0 NaN NaN ... NaN NaN 1 NaN NaN NaN 1.271753 2 1 2
16 VA29 1 NaN 2 22.361644 1 0 0 NaN NaN ... 1 NaN 0 0 NaN NaN 0.567233 1 0 1
17 VA30 1 NaN 2 33.054795 0 1 1 2 1 ... NaN 0 0 NaN NaN 1.131096 2 2 2
18 VA31 1 NaN 2 16.783562 0 1 1 1 1 ... 0 2 1 2 NaN NaN 0.865671 1 2 2
19 VA32 1 NaN 1 37.868493 0 0 0 NaN NaN ... NaN 2 NaN NaN NaN 0.927370 1 0 1
20 VA33 1 NaN 2 42.342466 1 1 1 1 1 ... 0 NaN NaN 3 NaN NaN 1.386849 2 2 2
21 VA34 1 NaN 1 34.753425 0 1 1 1 1 ... NaN 1 1 NaN NaN 1.235068 2 2 2
22 VA35 1 NaN 1 54.890411 0 0 0 NaN NaN ... NaN NaN 0 0 NaN NaN 1.417808 2 1 2
23 VA36 1 NaN 1 25.769863 0 1 1 NaN NaN ... 1 NaN NaN NaN NaN NaN 0.645397 1 0 1
24 VA37 1 NaN 2 43.630137 0 1 1 1 1 ... 1 NaN 3 3 NaN NaN 1.492603 2 2 2
25 VA38 1 NaN 1 23.876712 0 0 0 NaN NaN ... NaN 0 NaN NaN NaN 0.777534 1 1 2
26 VA39 1 NaN 1 27.219178 0 0 0 NaN NaN ... 0 NaN 0 3 NaN NaN 1.064384 2 2 2
27 VA40 1 NaN 2 56.432877 0 0 0 NaN NaN ... NaN NaN 0 NaN NaN NaN 1.638658 3 2 3
28 VA41 1 NaN 2 53.578082 0 1 3 NaN NaN ... 1 NaN 0 NaN NaN NaN 1.281562 2 1 1
29 VA42 1 NaN 2 24.189041 0 1 2 1 2 ... 0 NaN 3 NaN NaN NaN 0.583781 1 0 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1768 PA771 2 916 1 57.100000 1 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 1.262000 NaN 0 1
1769 PA772 2 917 2 31.500000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 0 0 0.920000 NaN 1 1
1770 PA773 2 918 1 60.000000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 0 0 1.370000 NaN 0 0
1771 PA774 2 919 2 22.700000 0 1 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.694000 NaN 2 2
1772 PA775 2 920 1 62.300000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 1 3 1.752800 NaN 2 3
1773 PA776 2 921 2 58.300000 1 0 NaN NaN NaN ... NaN NaN 0 NaN 1 3 1.692800 NaN 0 1
1774 PA777 2 922 2 56.100000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 2.034000 NaN 2 3
1775 PA778 2 923 2 77.000000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 2.102000 NaN 0 1
1776 PA779 2 924 2 61.200000 1 1 NaN NaN NaN ... NaN NaN 0 NaN 0 0 1.544000 NaN 1 2
1777 PA780 2 925 2 60.100000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 1 2.226900 NaN 2 3
1778 PA781 2 926 2 22.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 1.056000 NaN 0 1
1779 PA782 2 927 1 44.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 1.486000 NaN 2 2
1780 PA783 2 928 1 23.500000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 1.410000 NaN 2 2
1781 PA784 2 929 1 49.000000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.065000 NaN 0 0
1782 PA785 2 930 2 70.000000 0 0 NaN NaN NaN ... NaN NaN 1 NaN 0 0 1.650000 NaN 1 2
1783 PA786 2 931 1 74.700000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 1.784000 NaN 1 2
1784 PA787 2 932 2 42.400000 0 0 NaN NaN NaN ... NaN NaN 1 NaN 0 0 1.058000 NaN 1 1
1785 PA788 2 933 1 16.800000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 0 0 0.646000 NaN 1 1
1786 PA789 2 934 1 73.100000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 2.092000 NaN 2 3
1787 PA790 2 935 2 56.700000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 1 1.309900 NaN 0 0
1788 PA791 2 936 1 65.800000 0 0 NaN NaN NaN ... NaN NaN 0 NaN 1 1 2.004500 NaN 0 1
1789 PA792 2 937 1 65.300000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.888000 NaN 2 2
1790 PA793 2 938 1 38.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 1 1.256000 NaN 2 3
1791 PA794 2 939 2 27.400000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 0 0 1.591700 NaN 2 3
1792 PA795 2 940 1 49.600000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 0 0 1.312000 NaN 1 1
1793 PA796 2 941 1 11.400000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 2 0.858000 NaN 0 1
1794 PA797 2 942 1 77.700000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 1 3 1.631000 NaN 0 1
1795 PA798 2 943 2 33.600000 0 0 NaN NaN NaN ... NaN NaN 3 NaN 1 1 1.339000 NaN 0 1
1796 PA799 2 944 1 56.200000 1 0 NaN NaN NaN ... NaN NaN 3 NaN 1 3 2.264000 NaN 2 3
1797 PA800 2 945 2 35.800000 0 0 NaN NaN NaN ... NaN NaN 2 NaN 0 0 0.860000 NaN 0 1

1798 rows × 64 columns


In [22]:
simple_features = [
            'Sex',
            'age',
            'SM',
            #'S_M (size)',
            #'S-M (location)',
            #'S-M (vein)',
            'Max D',
            'Volume (mL)',
            'Hx of H',
            'Embo',
            'No drainv vein',
            'Draining_Vein_Depth',
            'Associated ',
            'Max dose (Gy)',
            'Peri_MarginalDose(Gy)',
            'Isodose',
            'Shots',
]
rename_dict = {
    'Max dose (Gy)' : 'Max_Dose',
    'age' : 'Age', 
    'Volume (mL)' : 'Volume',
    'Associated ' : 'Aneurysm',
    'Peri_MarginalDose(Gy)' : 'Marginal_Dose',
    'Hx of H' : 'History_of_Hemorrhage',
    'No drainv vein' : 'Number_Draining_Veins',
    #'S_M (size)' : "SM_Size", 
    #'S-M (location)' : "SM_Location", 
    #'S-M (vein)' : "SM_Vein", 
}            
df_in = df[simple_features].copy()
df_in.rename(columns = rename_dict, inplace = True)

# log transform of age
#df_in['Age'] = np.log(df_in['Age'])
# first get rid of weird empty fields

empty_ric =  ~(df['RIC'].str.strip().str.len().isnull())
ric_not_available = df['RIC'] == 9

# remove rows with missing data 
bad = df_in.Volume.isnull() | df_in.Embo.isnull() | empty_ric | ric_not_available
good = ~bad
df_in = df_in[good]

# some patients experience radiation induced changes
# if this is encoded as 1 in 'RIC', then the time 
# until change is in the column 'RIC post GK'. 
# otherwise, look up their last MRI in 'MR FU'

ric = df['RIC'][good].astype(bool)
ric_true_time = df['RIC post GK'][good]
ric_false_time = df['MR FU'][good]
ric_time = ric_true_time.copy()
ric_false_mask = ~ric
ric_time[ric_false_mask] = ric_false_time[ric_false_mask] 

# cast to a float only once both RIC times and last MRI followup are both in the 
# same series, otherwise we'll get missing values 
ric_time = ric_time.astype(float)

df_in['Early_RIC'] = ric & (ric_time <= 24) 
print list(df_in.columns)


[u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']

In [23]:
df_in


Out[23]:
Sex Age SM Max D Volume History_of_Hemorrhage Embo Number_Draining_Veins Draining_Vein_Depth Aneurysm Max_Dose Marginal_Dose Isodose Shots Early_RIC
0 1 43.704110 2 35 2.00 0 0 1 1 0 38 22 57.894737 3 False
1 2 35.879452 2 21 2.90 1 0 1 2 0 40 20 50.000000 2 True
2 2 21.197260 2 12 1.00 1 0 1 2 0 46 23 50.000000 2 False
3 1 25.800000 2 30 0.35 1 0 1 1 0 36 25 69.444444 1 True
4 2 31.010959 1 12 0.80 0 0 1 1 0 46 23 50.000000 2 False
5 2 63.016438 2 24 0.87 1 0 3 1 0 40 20 50.000000 1 True
6 1 44.320548 1 17 1.40 1 0 3 1 2 50 25 50.000000 2 False
7 2 40.202740 1 23 2.30 1 1 2 1 0 42 21 50.000000 3 False
9 1 36.638356 2 45 8.00 0 0 3 1 0 20 10 50.000000 4 False
10 2 24.328767 2 23 5.03 0 1 1 1 0 40 20 50.000000 2 False
11 2 29.219178 2 22 4.10 1 0 1 1 3 40 20 50.000000 4 True
12 1 29.630137 2 34 6.80 0 0 1 1 0 40 20 50.000000 2 False
13 2 45.589041 2 27 4.20 1 0 1 2 0 40 20 50.000000 3 False
14 2 44.065753 1 15 0.70 0 0 1 1 0 48 24 50.000000 2 False
15 2 36.671233 2 13 1.10 1 0 1 2 0 35 25 71.428571 1 True
17 2 81.753425 2 18 1.80 0 0 1 2 3 48 24 50.000000 2 False
18 1 47.956164 2 45 4.80 0 0 1 1 2 40 20 50.000000 2 False
19 1 42.758904 1 30 7.00 0 0 2 1 0 36 18 50.000000 2 True
20 2 14.008219 2 11 0.90 1 1 1 1 0 48 23 47.916667 3 True
21 2 53.131507 2 17 2.90 0 0 2 1 0 40 20 50.000000 2 True
22 2 24.602740 1 22 3.60 0 0 1 1 0 34 23 67.647059 1 True
23 1 38.624658 2 34 8.10 0 1 3 1 0 36 18 50.000000 4 False
24 2 30.180822 2 30 3.00 0 0 1 1 0 36 18 50.000000 2 True
25 1 64.602740 2 10 1.00 1 0 1 1 0 30 27 90.000000 1 False
26 2 26.295890 1 20 2.00 1 0 1 1 0 40 20 50.000000 3 True
27 1 48.087671 2 19 3.10 1 0 1 2 0 46 23 50.000000 2 False
28 2 22.361644 2 20 1.20 1 0 1 2 0 46 23 50.000000 2 False
29 2 33.054795 1 22 4.70 0 1 1 1 1 40 20 50.000000 4 True
30 2 16.783562 2 32 5.30 0 1 3 1 3 40 20 50.000000 3 False
31 1 37.868493 2 26 1.70 0 0 2 1 0 44 22 50.000000 4 False
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
978 1 62.767123 4 30 6.00 1 0 1 2 0 36 18 50.000000 3 True
979 1 10.709589 4 39 3.00 0 0 2 2 0 44 21 47.727273 5 True
980 2 18.854795 4 45 5.40 0 1 1 2 0 36 18 50.000000 2 True
981 1 7.052055 4 32 5.60 1 0 1 2 0 30 18 60.000000 2 False
982 1 11.098630 4 30 6.30 1 0 2 3 0 38 19 50.000000 2 False
983 2 45.372603 4 31 3.00 1 0 4 3 2 35 21 60.000000 3 False
984 2 36.978082 4 35 2.80 1 0 1 2 0 44 22 50.000000 6 False
985 2 15.010959 4 33 4.70 1 0 1 2 0 40 20 50.000000 3 False
986 1 5.739726 4 38 4.00 1 0 2 2 0 40 20 50.000000 1 False
987 2 22.906849 4 31 4.40 0 0 1 2 3 46 23 50.000000 4 True
988 2 21.515068 4 30 4.50 1 0 1 2 0 36 25 69.444444 2 True
989 2 15.561644 4 36 7.40 1 1 1 2 0 40 20 50.000000 3 False
990 1 9.953425 4 42 4.70 1 1 1 2 0 40 20 50.000000 4 False
992 1 13.726027 4 35 5.80 1 0 2 2 0 44 22 50.000000 6 False
993 1 20.290411 4 30 7.20 1 0 1 2 0 34 24 70.588235 2 False
994 2 12.246575 4 34 4.60 0 1 1 2 0 40 20 50.000000 3 True
995 1 23.416438 4 30 11.00 1 0 1 2 0 35 25 71.428571 2 True
996 2 16.484932 4 40 24.00 1 0 2 2 0 40 20 50.000000 6 False
997 1 6.386301 4 32 1.68 1 1 1 2 0 20 18 90.000000 1 True
998 2 35.249315 4 35 6.10 1 0 1 2 0 36 18 50.000000 2 True
999 1 13.578082 4 35 4.10 1 0 1 2 0 38 19 50.000000 2 True
1000 1 7.978082 4 36 3.90 1 0 1 2 0 36 22 61.111111 3 True
1001 2 11.824658 4 35 3.30 1 0 1 2 0 28 20 71.428571 3 True
1002 2 4.731507 4 47 12.70 0 0 5 3 0 44 22 50.000000 5 True
1003 2 56.849315 4 30 5.50 0 0 3 3 0 42 21 50.000000 3 True
1004 1 41.545205 4 31 5.50 0 0 1 2 0 40 20 50.000000 3 False
1005 2 14.950685 4 50 5.00 1 1 1 2 0 50 25 50.000000 3 False
1006 2 27.816438 4 34 5.90 0 0 1 2 0 34 17 50.000000 4 True
1008 1 20.484932 4 34 6.00 1 0 1 2 0 28 20 71.428571 2 True
1009 2 10.898630 4 31 2.90 1 0 1 2 0 40 20 50.000000 3 False

958 rows × 15 columns


In [24]:
outcomes = [
            'Final_Result',
            'RIC',
            'Degree of RIC',
            'K-Mtime yrs',
            'Permanet',
            'S/S from RIC',
            'Post GK H',
           ]

In [25]:
df_out = df[outcomes].rename(columns = {
    'Degree of RIC' : 'RIC_Degree',
    # either last time patient had an angiogram or time until positive angiogram
    'K-Mtime yrs': 'Years',
    'Permanet' : 'RIC_Permanent',
    'S/S from RIC' : 'RIC_Symptoms',
    'Post GK H' : 'Hemorrhage'}).copy()
df_out['RIC'] = df_out['RIC'].convert_objects(convert_numeric=True)


df_out['RIC_Symptoms'] = df_out['RIC_Symptoms'].convert_objects(convert_numeric=True)
df_out['RIC_Symptoms'][df_out.RIC_Symptoms == 0] = NaN
# if only values should be False/True
df_out['RIC_Permanent'] = df_out['RIC_Permanent'].convert_objects(convert_numeric=True)
df_out['RIC_Permanent'][df_out['RIC_Permanent'].isnull()] = 0
df_out['RIC_Permanent'] = df_out['RIC_Permanent'].astype('bool')


# absence of data indicated either by 9 or NaN, normalize to only use one 
df_out['RIC'][df_out['RIC'] == 9] = np.nan
df_out['RIC_Degree'] = df_out['RIC_Degree'].convert_objects(convert_numeric=True)

df_out['Hemorrhage'] = df_out['Hemorrhage'] > 0

In [26]:
df_out['Angio_Obliteration'] = df_out['Final_Result'] == 4

In [27]:
df_out['Obliteration'] = (df_out['Final_Result'] == 4) | (df_out['Final_Result'] == 5)

In [28]:
TIME = 4
print "# Years <= TIME", (df_out.Years <= TIME).sum()
before = df_out.Years <= TIME

censored = before & ~df_out.Obliteration
df_out['Censored'] = censored
print "# censored", censored.sum()
Y_RIC = ( (df_out.RIC == 1) & ~df_out.RIC_Symptoms.isnull() )[~bad & ~censored]
print "Mean RIC", Y_RIC.mean() 
Y_Obliteration = np.array((before & df_out.Obliteration)[~bad & ~censored])
print "Mean Oblit", Y_Obliteration.mean()


# Years <= TIME 603
# censored 100
Mean RIC 0.109048723898
Mean Oblit 0.551044083527

In [29]:
df_out['RIC_Bad'] = ((df_out.RIC == 1) & ~df_out.RIC_Symptoms.isnull() & df_out.RIC_Permanent)
df_out['Adverse_Event'] = df_out.Hemorrhage | df_out.RIC_Bad
df_out['Obliteration_Healthy'] = df_out.Obliteration & ~df_out.Adverse_Event
df_in.to_csv("avm_features.csv")
df_out.to_csv("avm_outcomes.csv")

In [30]:
X = df_in.as_matrix()
print "X before filtering", X.dtype, X.shape

mask = ~censored[~bad]
X = np.array([X[i] for i, b in enumerate(mask) if b]).astype(float)
print "X after filtering", X.dtype, X.shape


X before filtering object (958, 15)
X after filtering float64 (862, 15)

In [31]:
n_samples, n_features = X.shape

In [31]:


In [32]:
import sklearn.linear_model
import sklearn.ensemble
import sklearn.svm
import sklearn.neighbors

# dictionary mapping model instances to their CV parameter grids
candidate_models = {}


Cs = [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10]
gammas = [0.0001, .0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]
svm_param_grids = [
    # linear SVM
    {
       'C' : Cs, 
       'kernel' : ['linear'],
       'probability' : [True],
    },
    # RBF SVM
    {
      'C' : Cs, 
      'gamma': gammas,
      'kernel' : ['rbf'],
      'probability' : [True],
    }
]
svm = sklearn.svm.SVC()
candidate_models[svm] = svm_param_grids

knn_params = [
    {
     'n_neighbors' : [1,3,5,15,31], 
     'weights' : ['uniform', 'distance'],
    }
]
knn = sklearn.neighbors.KNeighborsClassifier()
candidate_models[knn] = knn_params

from sklearn.neighbors import KNeighborsClassifier
lr_parameter_grids = [
    {
         'penalty' : ['l1', 'l2'],
         'fit_intercept' : [True, False],
         'C' : Cs, 
    }
]
lr = sklearn.linear_model.LogisticRegression()
candidate_models[lr] = lr_parameter_grids

n_estimators = [25, 50, 100, 200, 400]
ada = sklearn.ensemble.AdaBoostClassifier()
candidate_models[ada] = [{ 'n_estimators' : n_estimators, 'learning_rate' : [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1] }]

criterions = ['gini', 'entropy']
max_depth = [10, 20, None]
rf_parameter_grids = [
   {
      'criterion' : criterions,
      'max_depth' : max_depth,
      'n_estimators' : n_estimators,
   }
]


extra = sklearn.ensemble.ExtraTreesClassifier()
rf = sklearn.ensemble.RandomForestClassifier()
candidate_models[extra] = rf_parameter_grids
candidate_models[rf] = rf_parameter_grids

print "# candidate model sets:", len(candidate_models)
for k,v in candidate_models.iteritems():
    print 
    print k
    print "---"
    print v
    print


# candidate model sets: 6

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
---
[{'n_neighbors': [1, 3, 5, 15, 31], 'weights': ['uniform', 'distance']}]


SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
---
[{'kernel': ['linear'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True]}, {'kernel': ['rbf'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]}]


ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
---
[{'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}]


LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
---
[{'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'fit_intercept': [True, False]}]


RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
---
[{'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}]


AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=1.0, n_estimators=50, random_state=None)
---
[{'n_estimators': [25, 50, 100, 200, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]}]


In [33]:
reload(cv)
import cv
cv_aucs = cv.evaluate(X, Y_Obliteration, candidate_models)
        
for k, aucs in cv_aucs.iteritems():
    print k
    print "AUCs", aucs
    print "mean AUC: %0.4f" % np.mean(aucs)
    print "median AUC: %0.4f" % np.median(aucs)
    print "std AUC: %0.4f" % np.std(aucs)


Fold #1
# total train 689
# test 173

Base Model KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
Param_grid #1/1 {'n_neighbors': [1, 3, 5, 15, 31], 'weights': ['uniform', 'distance']}
-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='uniform')
-- AUC: 0.5662

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='distance')
-- AUC: 0.5662

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='uniform')
-- AUC: 0.6024

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='distance')
-- AUC: 0.5966

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
-- AUC: 0.6360

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='distance')
-- AUC: 0.6288

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='uniform')
-- AUC: 0.6800

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='distance')
-- AUC: 0.6727

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- AUC: 0.7069

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='distance')
-- AUC: 0.7027

== Best Model for KNeighborsClassifier = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform'), AUC = 0.7069

Base Model SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
Param_grid #1/2 {'kernel': ['linear'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7331

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7328

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7290

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7291

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7274

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7249

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7223

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7209

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7220

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7213

Param_grid #2/2 {'kernel': ['rbf'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7322

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6764

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7319

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7322

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7314

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7201

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7055

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6101

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5431

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=10, kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4969

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7323

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6202

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7326

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7332

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6752

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6649

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7034

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6041

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5861

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4923

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7319

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7328

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7330

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6768

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7321

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7182

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7034

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6360

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5385

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5003

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6763

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6762

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7329

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6509

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7321

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7181

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7035

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6349

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5695

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5098

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6772

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6521

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6206

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7333

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7324

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7191

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7037

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6322

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5695

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5080

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6773

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7332

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7329

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7333

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7312

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7180

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7040

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5958

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5715

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5080

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6679

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7333

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7327

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7289

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7275

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7129

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6978

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6351

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5572

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5064

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6207

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7326

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7320

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7298

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7248

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7079

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6849

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6194

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5833

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5080

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7329

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7289

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7305

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7265

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7184

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6537

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6218

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5827

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5304

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5091

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7321

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7298

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7278

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7221

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7057

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6239

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5956

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5793

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5696

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5072

== Best Model for SVC = SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False), AUC = 0.7333

Base Model ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6980

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6545

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6544

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6944

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6616

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6370

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6993

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6594

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6619

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7061

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6663

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6536

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6970

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6618

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6613

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7014

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6640

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6686

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7065

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6672

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6641

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7043

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6658

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6589

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6980

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6693

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6630

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7056

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6649

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6638

== Best Model for ExtraTreesClassifier = ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0), AUC = 0.7065

Base Model LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
Param_grid #1/1 {'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'fit_intercept': [True, False]}
-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5953

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5953

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7259

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7259

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7278

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7279

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7252

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7255

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7249

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7249

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7247

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7250

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7247

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7252

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7313

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7313

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7313

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7312

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7299

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7299

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7297

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7300

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7262

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7270

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7263

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7269

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7256

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7260

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7255

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7254

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7248

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7254

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7248

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7252

== Best Model for LogisticRegression = LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001), AUC = 0.7313

Base Model RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6775

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6660

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6866

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6927

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6919

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6822

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6926

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6907

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6927

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7004

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6963

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7018

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7080

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6928

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6881

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6994

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6906

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6909

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6990

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6950

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6942

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7081

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6918

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6989

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7002

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6943

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6947

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7078

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6986

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6984

== Best Model for RandomForestClassifier = RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0), AUC = 0.7081

Base Model AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=1.0, n_estimators=50, random_state=None)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]}
-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=25, random_state=None)
-- AUC: 0.6742

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=25, random_state=None)
-- AUC: 0.6760

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=25, random_state=None)
-- AUC: 0.6887

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=25, random_state=None)
-- AUC: 0.7194

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None)
-- AUC: 0.7316

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=25, random_state=None)
-- AUC: 0.6987

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=25, random_state=None)
-- AUC: 0.6749

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=50, random_state=None)
-- AUC: 0.6742

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=50, random_state=None)
-- AUC: 0.6876

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=50, random_state=None)
-- AUC: 0.7107

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None)
-- AUC: 0.7299

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=50, random_state=None)
-- AUC: 0.7264

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=50, random_state=None)
-- AUC: 0.6916

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=50, random_state=None)
-- AUC: 0.6678

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=100, random_state=None)
-- AUC: 0.6760

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=100, random_state=None)
-- AUC: 0.7108

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=100, random_state=None)
-- AUC: 0.7139

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=100, random_state=None)
-- AUC: 0.7251

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=100, random_state=None)
-- AUC: 0.7116

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=100, random_state=None)
-- AUC: 0.6721

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=100, random_state=None)
-- AUC: 0.6452

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=200, random_state=None)
-- AUC: 0.6887

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=200, random_state=None)
-- AUC: 0.7134

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=200, random_state=None)
-- AUC: 0.7287

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=200, random_state=None)
-- AUC: 0.7119

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=200, random_state=None)
-- AUC: 0.6974

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=200, random_state=None)
-- AUC: 0.6604

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=200, random_state=None)
-- AUC: 0.6377

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=400, random_state=None)
-- AUC: 0.7120

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=400, random_state=None)
-- AUC: 0.7284

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- AUC: 0.7301

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=400, random_state=None)
-- AUC: 0.6971

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=400, random_state=None)
-- AUC: 0.6811

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=400, random_state=None)
-- AUC: 0.6512

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=400, random_state=None)
-- AUC: 0.6230

== Best Model for AdaBoostClassifier = AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None), AUC = 0.7316


Done with hyperparameter selection

==========
LogisticRegression
-- best model: LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- params: {'penalty': 'l2', 'C': 0.001, 'fit_intercept': True}
-- Fold #1 test AUC for LogisticRegression: 0.7273

ExtraTreesClassifier
-- best model: ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 200, 'criterion': 'gini', 'max_depth': 10}
-- Fold #1 test AUC for ExtraTreesClassifier: 0.7346

RandomForestClassifier
-- best model: RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 200, 'criterion': 'entropy', 'max_depth': 10}
-- Fold #1 test AUC for RandomForestClassifier: 0.7338

KNeighborsClassifier
-- best model: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- params: {'n_neighbors': 31, 'weights': 'uniform'}
-- Fold #1 test AUC for KNeighborsClassifier: 0.7352

AdaBoostClassifier
-- best model: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None)
-- params: {'n_estimators': 25, 'learning_rate': 0.1}
-- Fold #1 test AUC for AdaBoostClassifier: 0.6839

SVC
-- best model: SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- params: {'kernel': 'rbf', 'C': 0.5, 'gamma': 0.0005, 'probability': True}
-- Fold #1 test AUC for SVC: 0.7346

Fold #2
# total train 689
# test 173

Base Model KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
Param_grid #1/1 {'n_neighbors': [1, 3, 5, 15, 31], 'weights': ['uniform', 'distance']}
-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='uniform')
-- AUC: 0.5408

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='distance')
-- AUC: 0.5408

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='uniform')
-- AUC: 0.6147

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='distance')
-- AUC: 0.6108

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
-- AUC: 0.6374

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='distance')
-- AUC: 0.6344

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='uniform')
-- AUC: 0.6831

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='distance')
-- AUC: 0.6821

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- AUC: 0.7086

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='distance')
-- AUC: 0.7041

== Best Model for KNeighborsClassifier = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform'), AUC = 0.7086

Base Model SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
Param_grid #1/2 {'kernel': ['linear'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6312

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7274

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7224

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7162

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7160

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7156

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7162

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7159

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7148

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7151

Param_grid #2/2 {'kernel': ['rbf'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6782

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6292

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7258

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7260

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6763

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7265

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7165

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6585

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6147

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=10, kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5339

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7268

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7252

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7268

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6775

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7262

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7158

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6592

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5971

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5300

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6292

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6788

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7270

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7269

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7254

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7158

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6582

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6118

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5193

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7267

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7267

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6737

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6281

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7251

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7158

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6588

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6123

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4833

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7278

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7269

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5558

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7272

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7268

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7277

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7157

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6597

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6103

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4851

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7272

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7272

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7266

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7273

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7134

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6062

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6105

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5112

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7272

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7274

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7276

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7250

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7223

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7199

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7061

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6573

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5783

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4591

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7281

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7271

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7207

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7204

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7106

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6921

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6442

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6120

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4811

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7279

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7233

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7171

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7165

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7098

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6605

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6338

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6141

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5959

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5231

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7273

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7167

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7170

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7134

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7002

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6363

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6213

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6094

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5977

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4645

== Best Model for SVC = SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False), AUC = 0.7281

Base Model ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6895

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6599

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6586

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6913

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6904

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6600

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6836

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6589

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6678

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6904

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6714

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6684

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6866

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6775

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6728

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6916

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6836

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6715

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6960

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6703

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6726

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6910

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6773

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6745

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6893

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6746

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6730

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6920

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6738

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6738

== Best Model for ExtraTreesClassifier = ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0), AUC = 0.6960

Base Model LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
Param_grid #1/1 {'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'fit_intercept': [True, False]}
-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5489

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5489

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7160

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7169

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7206

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7212

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7167

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7170

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7165

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7170

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7137

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7153

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7134

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7153

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7239

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7239

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7231

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7231

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7217

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7220

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7206

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7207

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7197

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7203

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7188

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7193

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7169

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7175

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7159

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7172

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7145

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7166

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7139

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7158

== Best Model for LogisticRegression = LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001), AUC = 0.7239

Base Model RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6803

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6799

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6881

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6960

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6924

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7011

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7021

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6931

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6840

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6934

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6945

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6928

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7071

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6961

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6945

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7067

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6926

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6923

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7009

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6896

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6882

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7035

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7026

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6933

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7017

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6995

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6933

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7022

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6972

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6948

== Best Model for RandomForestClassifier = RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0), AUC = 0.7071

Base Model AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=1.0, n_estimators=50, random_state=None)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]}
-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=25, random_state=None)
-- AUC: 0.6471

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=25, random_state=None)
-- AUC: 0.6612

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=25, random_state=None)
-- AUC: 0.6649

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=25, random_state=None)
-- AUC: 0.6870

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None)
-- AUC: 0.7027

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=25, random_state=None)
-- AUC: 0.6842

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=25, random_state=None)
-- AUC: 0.6782

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=50, random_state=None)
-- AUC: 0.6504

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=50, random_state=None)
-- AUC: 0.6637

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=50, random_state=None)
-- AUC: 0.6757

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None)
-- AUC: 0.7036

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=50, random_state=None)
-- AUC: 0.7115

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=50, random_state=None)
-- AUC: 0.6675

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=50, random_state=None)
-- AUC: 0.6456

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=100, random_state=None)
-- AUC: 0.6612

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=100, random_state=None)
-- AUC: 0.6749

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=100, random_state=None)
-- AUC: 0.6829

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=100, random_state=None)
-- AUC: 0.7119

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=100, random_state=None)
-- AUC: 0.7011

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=100, random_state=None)
-- AUC: 0.6497

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=100, random_state=None)
-- AUC: 0.6333

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=200, random_state=None)
-- AUC: 0.6623

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=200, random_state=None)
-- AUC: 0.6838

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=200, random_state=None)
-- AUC: 0.7007

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=200, random_state=None)
-- AUC: 0.7019

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=200, random_state=None)
-- AUC: 0.6799

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=200, random_state=None)
-- AUC: 0.6351

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=200, random_state=None)
-- AUC: 0.6261

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=400, random_state=None)
-- AUC: 0.6759

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=400, random_state=None)
-- AUC: 0.7006

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- AUC: 0.7135

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=400, random_state=None)
-- AUC: 0.6807

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=400, random_state=None)
-- AUC: 0.6639

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=400, random_state=None)
-- AUC: 0.6289

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=400, random_state=None)
-- AUC: 0.6157

== Best Model for AdaBoostClassifier = AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None), AUC = 0.7135


Done with hyperparameter selection

==========
LogisticRegression
-- best model: LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- params: {'penalty': 'l2', 'C': 0.0001, 'fit_intercept': True}
-- Fold #2 test AUC for LogisticRegression: 0.7377

ExtraTreesClassifier
-- best model: ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 200, 'criterion': 'gini', 'max_depth': 10}
-- Fold #2 test AUC for ExtraTreesClassifier: 0.7129

RandomForestClassifier
-- best model: RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 100, 'criterion': 'gini', 'max_depth': 10}
-- Fold #2 test AUC for RandomForestClassifier: 0.7209

KNeighborsClassifier
-- best model: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- params: {'n_neighbors': 31, 'weights': 'uniform'}
-- Fold #2 test AUC for KNeighborsClassifier: 0.7091

AdaBoostClassifier
-- best model: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- params: {'n_estimators': 400, 'learning_rate': 0.01}
-- Fold #2 test AUC for AdaBoostClassifier: 0.7424

SVC
-- best model: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- params: {'kernel': 'rbf', 'C': 1, 'gamma': 0.0005, 'probability': True}
-- Fold #2 test AUC for SVC: 0.7380

Fold #3
# total train 690
# test 172

Base Model KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
Param_grid #1/1 {'n_neighbors': [1, 3, 5, 15, 31], 'weights': ['uniform', 'distance']}
-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='uniform')
-- AUC: 0.5504

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='distance')
-- AUC: 0.5504

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='uniform')
-- AUC: 0.6037

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='distance')
-- AUC: 0.6008

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
-- AUC: 0.6351

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='distance')
-- AUC: 0.6304

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='uniform')
-- AUC: 0.6684

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='distance')
-- AUC: 0.6669

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- AUC: 0.6768

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='distance')
-- AUC: 0.6767

== Best Model for KNeighborsClassifier = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform'), AUC = 0.6768

Base Model SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
Param_grid #1/2 {'kernel': ['linear'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7058

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7064

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7005

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6948

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6878

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6845

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6835

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6834

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6835

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6837

Param_grid #2/2 {'kernel': ['rbf'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7070

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6575

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7073

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7060

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7068

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7000

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6835

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6170

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5763

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=10, kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5283

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7071

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7086

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6554

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7069

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7070

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6998

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6832

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6091

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5751

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5063

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7071

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7084

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7070

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7053

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7064

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6996

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6851

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6048

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5743

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4853

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7063

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7073

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7065

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7060

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7061

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6996

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6850

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6045

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5744

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4725

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7063

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7061

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7065

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7065

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7061

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7000

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6853

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6054

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5738

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4773

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7067

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7063

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7064

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7066

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7073

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7025

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6874

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6036

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5742

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4756

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7063

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7062

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7061

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7025

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7000

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6869

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6784

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6052

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5740

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4869

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7064

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7062

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7070

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6973

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6933

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6748

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6637

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5998

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5753

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4762

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7063

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7005

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6952

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6841

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6697

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6396

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6128

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5831

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5699

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5003

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7068

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6949

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6909

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6769

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6562

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6197

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5947

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5812

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5695

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5180

== Best Model for SVC = SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False), AUC = 0.7086

Base Model ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6543

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6315

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6296

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6534

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6365

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6292

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6549

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6239

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6281

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6631

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6339

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6290

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6578

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6372

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6383

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6664

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6403

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6386

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6599

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6307

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6431

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6685

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6377

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6315

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6644

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6368

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6344

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6701

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6401

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6328

== Best Model for ExtraTreesClassifier = ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0), AUC = 0.6701

Base Model LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
Param_grid #1/1 {'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'fit_intercept': [True, False]}
-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5254

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5254

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6981

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6987

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7011

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7015

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6920

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6928

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6913

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6929

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6886

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6901

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6881

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6896

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7073

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7073

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7056

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7056

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7045

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7047

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7023

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7028

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6959

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6974

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6942

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6954

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6909

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6925

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6900

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6920

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6887

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6904

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6881

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.6898

== Best Model for LogisticRegression = LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001), AUC = 0.7073

Base Model RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6538

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6447

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6302

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6569

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6451

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6618

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6728

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6580

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6601

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6562

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6439

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6611

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6683

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6571

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6629

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6735

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6540

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6676

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6669

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6640

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6597

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6672

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6648

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6539

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6735

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6577

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6630

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6752

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6659

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6608

== Best Model for RandomForestClassifier = RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0), AUC = 0.6752

Base Model AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=1.0, n_estimators=50, random_state=None)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]}
-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=25, random_state=None)
-- AUC: 0.5856

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=25, random_state=None)
-- AUC: 0.6189

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=25, random_state=None)
-- AUC: 0.6351

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=25, random_state=None)
-- AUC: 0.6788

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None)
-- AUC: 0.6974

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=25, random_state=None)
-- AUC: 0.6633

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=25, random_state=None)
-- AUC: 0.6408

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=50, random_state=None)
-- AUC: 0.6033

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=50, random_state=None)
-- AUC: 0.6384

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=50, random_state=None)
-- AUC: 0.6678

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None)
-- AUC: 0.6970

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=50, random_state=None)
-- AUC: 0.6954

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=50, random_state=None)
-- AUC: 0.6530

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=50, random_state=None)
-- AUC: 0.6404

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=100, random_state=None)
-- AUC: 0.6030

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=100, random_state=None)
-- AUC: 0.6693

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=100, random_state=None)
-- AUC: 0.6768

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=100, random_state=None)
-- AUC: 0.6964

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=100, random_state=None)
-- AUC: 0.6789

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=100, random_state=None)
-- AUC: 0.6325

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=100, random_state=None)
-- AUC: 0.6215

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=200, random_state=None)
-- AUC: 0.6193

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=200, random_state=None)
-- AUC: 0.6767

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=200, random_state=None)
-- AUC: 0.6924

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=200, random_state=None)
-- AUC: 0.6799

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=200, random_state=None)
-- AUC: 0.6660

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=200, random_state=None)
-- AUC: 0.6196

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=200, random_state=None)
-- AUC: 0.6088

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=400, random_state=None)
-- AUC: 0.6598

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=400, random_state=None)
-- AUC: 0.6925

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- AUC: 0.7007

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=400, random_state=None)
-- AUC: 0.6669

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=400, random_state=None)
-- AUC: 0.6509

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=400, random_state=None)
-- AUC: 0.6069

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=400, random_state=None)
-- AUC: 0.5971

== Best Model for AdaBoostClassifier = AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None), AUC = 0.7007


Done with hyperparameter selection

==========
LogisticRegression
-- best model: LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- params: {'penalty': 'l2', 'C': 0.0001, 'fit_intercept': True}
-- Fold #3 test AUC for LogisticRegression: 0.8167

ExtraTreesClassifier
-- best model: ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 400, 'criterion': 'entropy', 'max_depth': 10}
-- Fold #3 test AUC for ExtraTreesClassifier: 0.8289

RandomForestClassifier
-- best model: RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 400, 'criterion': 'entropy', 'max_depth': 10}
-- Fold #3 test AUC for RandomForestClassifier: 0.8294

KNeighborsClassifier
-- best model: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- params: {'n_neighbors': 31, 'weights': 'uniform'}
-- Fold #3 test AUC for KNeighborsClassifier: 0.8329

AdaBoostClassifier
-- best model: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- params: {'n_estimators': 400, 'learning_rate': 0.01}
-- Fold #3 test AUC for AdaBoostClassifier: 0.8026

SVC
-- best model: SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- params: {'kernel': 'rbf', 'C': 0.001, 'gamma': 0.0005, 'probability': True}
-- Fold #3 test AUC for SVC: 0.8187

Fold #4
# total train 690
# test 172

Base Model KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
Param_grid #1/1 {'n_neighbors': [1, 3, 5, 15, 31], 'weights': ['uniform', 'distance']}
-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='uniform')
-- AUC: 0.5711

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='distance')
-- AUC: 0.5711

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='uniform')
-- AUC: 0.6447

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='distance')
-- AUC: 0.6402

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
-- AUC: 0.6677

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='distance')
-- AUC: 0.6661

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='uniform')
-- AUC: 0.6988

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='distance')
-- AUC: 0.7000

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- AUC: 0.7233

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='distance')
-- AUC: 0.7232

== Best Model for KNeighborsClassifier = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform'), AUC = 0.7233

Base Model SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
Param_grid #1/2 {'kernel': ['linear'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5544

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7259

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7220

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7199

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7075

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7084

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7037

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7030

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7012

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7026

Param_grid #2/2 {'kernel': ['rbf'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6186

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6930

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5881

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6184

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7224

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6694

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6301

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5789

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5791

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=10, kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5160

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6187

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6193

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6709

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6165

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7249

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7247

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6608

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5727

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5513

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5249

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6188

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6701

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7246

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6172

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6707

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6329

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7133

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5747

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5515

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5201

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6090

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6714

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6707

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6324

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7254

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7238

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6244

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5753

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5774

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5038

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7244

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7241

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6180

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7255

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7253

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7248

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7133

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5433

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5758

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4932

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6101

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6691

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7247

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7264

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7289

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7265

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7157

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6029

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5769

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4635

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6643

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7246

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7257

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7243

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7247

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7192

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7127

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6614

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6019

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4866

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6181

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7256

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7249

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7225

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7215

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7098

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7058

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6470

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5965

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4616

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7260

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7220

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7213

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7179

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7151

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6988

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6778

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5996

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5859

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4897

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7251

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7207

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7158

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7171

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7106

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6913

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6570

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6002

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5847

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4586

== Best Model for SVC = SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False), AUC = 0.7289

Base Model ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7017

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6738

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6665

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7036

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6732

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6774

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7036

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6837

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6949

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7025

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6780

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6732

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7083

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6822

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6890

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7091

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6907

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6907

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7128

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6875

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6891

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7161

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6884

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6940

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7128

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6902

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6933

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7147

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6917

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6912

== Best Model for ExtraTreesClassifier = ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0), AUC = 0.7161

Base Model LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
Param_grid #1/1 {'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'fit_intercept': [True, False]}
-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5484

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5484

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7163

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7163

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7213

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7209

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7173

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7167

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7152

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7154

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7142

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7141

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7141

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7145

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7235

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7235

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7242

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7242

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7239

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7239

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7234

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7236

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7210

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7206

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7188

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7188

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7164

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7158

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7156

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7156

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7147

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7149

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7144

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7147

== Best Model for LogisticRegression = LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001), AUC = 0.7242

Base Model RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6966

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6878

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6993

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6957

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6940

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6888

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7041

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7022

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6826

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7104

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6982

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6984

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6997

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7051

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6908

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7100

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7014

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7151

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7076

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7057

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7026

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7115

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7099

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7041

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7091

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7034

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7090

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7134

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7024

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7113

== Best Model for RandomForestClassifier = RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0), AUC = 0.7151

Base Model AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=1.0, n_estimators=50, random_state=None)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]}
-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=25, random_state=None)
-- AUC: 0.6110

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=25, random_state=None)
-- AUC: 0.6272

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=25, random_state=None)
-- AUC: 0.6689

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=25, random_state=None)
-- AUC: 0.6957

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None)
-- AUC: 0.7091

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=25, random_state=None)
-- AUC: 0.6881

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=25, random_state=None)
-- AUC: 0.6758

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=50, random_state=None)
-- AUC: 0.6110

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=50, random_state=None)
-- AUC: 0.6687

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=50, random_state=None)
-- AUC: 0.6777

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None)
-- AUC: 0.7087

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=50, random_state=None)
-- AUC: 0.7127

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=50, random_state=None)
-- AUC: 0.6773

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=50, random_state=None)
-- AUC: 0.6681

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=100, random_state=None)
-- AUC: 0.6257

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=100, random_state=None)
-- AUC: 0.6777

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=100, random_state=None)
-- AUC: 0.6902

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=100, random_state=None)
-- AUC: 0.7144

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=100, random_state=None)
-- AUC: 0.7046

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=100, random_state=None)
-- AUC: 0.6698

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=100, random_state=None)
-- AUC: 0.6565

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=200, random_state=None)
-- AUC: 0.6661

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=200, random_state=None)
-- AUC: 0.6900

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=200, random_state=None)
-- AUC: 0.7057

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=200, random_state=None)
-- AUC: 0.7040

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=200, random_state=None)
-- AUC: 0.6925

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=200, random_state=None)
-- AUC: 0.6562

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=200, random_state=None)
-- AUC: 0.6423

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=400, random_state=None)
-- AUC: 0.6745

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=400, random_state=None)
-- AUC: 0.7055

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- AUC: 0.7152

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=400, random_state=None)
-- AUC: 0.6944

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=400, random_state=None)
-- AUC: 0.6857

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=400, random_state=None)
-- AUC: 0.6481

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=400, random_state=None)
-- AUC: 0.6238

== Best Model for AdaBoostClassifier = AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None), AUC = 0.7152


Done with hyperparameter selection

==========
LogisticRegression
-- best model: LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- params: {'penalty': 'l2', 'C': 0.001, 'fit_intercept': True}
-- Fold #4 test AUC for LogisticRegression: 0.7584

ExtraTreesClassifier
-- best model: ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 200, 'criterion': 'entropy', 'max_depth': 10}
-- Fold #4 test AUC for ExtraTreesClassifier: 0.7300

RandomForestClassifier
-- best model: RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 100, 'criterion': 'entropy', 'max_depth': None}
-- Fold #4 test AUC for RandomForestClassifier: 0.7392

KNeighborsClassifier
-- best model: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- params: {'n_neighbors': 31, 'weights': 'uniform'}
-- Fold #4 test AUC for KNeighborsClassifier: 0.6962

AdaBoostClassifier
-- best model: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- params: {'n_estimators': 400, 'learning_rate': 0.01}
-- Fold #4 test AUC for AdaBoostClassifier: 0.7421

SVC
-- best model: SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- params: {'kernel': 'rbf', 'C': 0.1, 'gamma': 0.01, 'probability': True}
-- Fold #4 test AUC for SVC: 0.7511

Fold #5
# total train 690
# test 172

Base Model KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
Param_grid #1/1 {'n_neighbors': [1, 3, 5, 15, 31], 'weights': ['uniform', 'distance']}
-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='uniform')
-- AUC: 0.5553

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=1, p=2, weights='distance')
-- AUC: 0.5553

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='uniform')
-- AUC: 0.6094

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=3, p=2, weights='distance')
-- AUC: 0.6081

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='uniform')
-- AUC: 0.6488

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=5, p=2, weights='distance')
-- AUC: 0.6442

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='uniform')
-- AUC: 0.6913

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=15, p=2, weights='distance')
-- AUC: 0.6883

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- AUC: 0.7098

-- KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='distance')
-- AUC: 0.7059

== Best Model for KNeighborsClassifier = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform'), AUC = 0.7098

Base Model SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
Param_grid #1/2 {'kernel': ['linear'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6292

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7300

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0, kernel='linear', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7250

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7192

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7168

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7154

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7129

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7132

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7127

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel='linear', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7125

Param_grid #2/2 {'kernel': ['rbf'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'probability': [True], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10]}
-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6782

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6901

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6290

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6531

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7288

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7332

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6317

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5999

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6041

-- SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=10, kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4996

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7285

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6786

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6286

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6799

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6800

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6829

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6330

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5972

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5597

-- SVC(C=0.001, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5075

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7284

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6283

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6294

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6293

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7308

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7327

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.1, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6767

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.5, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6327

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5745

-- SVC(C=0.005, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4813

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6774

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6801

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6287

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7308

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6545

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7327

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7220

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6643

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6014

-- SVC(C=0.01, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4773

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6791

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6795

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6767

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7309

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.01, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7306

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7319

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7216

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6022

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5918

-- SVC(C=0.05, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4795

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7297

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7301

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7303

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7306

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7304

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7300

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7231

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6018

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5737

-- SVC(C=0.1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4813

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6774

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7301

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7296

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7272

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7245

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7227

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7159

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6631

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6005

-- SVC(C=0.5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4887

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7303

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7300

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7299

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7218

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7201

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7175

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7074

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6505

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5992

-- SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4815

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7301

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7251

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7197

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7112

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7114

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6835

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6530

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6072

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5840

-- SVC(C=5, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4841

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0001, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7294

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.0005, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7194

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7178

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.005,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.7113

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.01,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6984

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.05,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6629

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6276

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.5,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.6056

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=1,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.5834

-- SVC(C=10, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=10,
  kernel='rbf', max_iter=-1, probability=True, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
-- AUC: 0.4914

== Best Model for SVC = SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False), AUC = 0.7332

Base Model ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7089

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6724

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6755

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7023

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6576

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=25, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6697

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7000

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6638

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6815

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.7061

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6837

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=50, n_jobs=1, oob_score=False,
           random_state=None, verbose=0)
-- AUC: 0.6803

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7017

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6804

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6735

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7054

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6789

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=100, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6748

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7120

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6757

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6809

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7116

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6881

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6784

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7111

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6815

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6801

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7085

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=20, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6837

-- ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='entropy', max_depth=None, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=400, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6843

== Best Model for ExtraTreesClassifier = ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0), AUC = 0.7120

Base Model LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
Param_grid #1/1 {'penalty': ['l1', 'l2'], 'C': [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'fit_intercept': [True, False]}
-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l1',
          random_state=None, tol=0.0001)
-- AUC: 0.5000

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6459

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.6459

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7160

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7162

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7178

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7186

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7175

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7180

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7174

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7182

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7151

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7156

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7151

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l1', random_state=None, tol=0.0001)
-- AUC: 0.7163

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7269

-- LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7269

-- LogisticRegression(C=0.001, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7269

-- LogisticRegression(C=0.001, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7269

-- LogisticRegression(C=0.005, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7250

-- LogisticRegression(C=0.005, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- AUC: 0.7250

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7241

-- LogisticRegression(C=0.01, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7241

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7200

-- LogisticRegression(C=0.05, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7208

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7187

-- LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7194

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7158

-- LogisticRegression(C=0.5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7169

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7156

-- LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7169

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7154

-- LogisticRegression(C=5, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7163

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7155

-- LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=False,
          intercept_scaling=1, penalty='l2', random_state=None, tol=0.0001)
-- AUC: 0.7165

== Best Model for LogisticRegression = LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001), AUC = 0.7269

Base Model RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'criterion': ['gini', 'entropy'], 'max_depth': [10, 20, None]}
-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6962

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6849

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6945

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6970

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6926

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=25, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6934

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7052

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6992

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.6989

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7150

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7036

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=50, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7099

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7179

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7091

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7091

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7118

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7019

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7198

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7132

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7035

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7092

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7146

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7082

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=200, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7093

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7169

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7052

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='gini', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7101

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=10, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7179

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=20, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7122

-- RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=400, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- AUC: 0.7119

== Best Model for RandomForestClassifier = RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0), AUC = 0.7198

Base Model AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=1.0, n_estimators=50, random_state=None)
Param_grid #1/1 {'n_estimators': [25, 50, 100, 200, 400], 'learning_rate': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]}
-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=25, random_state=None)
-- AUC: 0.6263

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=25, random_state=None)
-- AUC: 0.6508

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=25, random_state=None)
-- AUC: 0.6752

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=25, random_state=None)
-- AUC: 0.6985

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=25, random_state=None)
-- AUC: 0.7163

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=25, random_state=None)
-- AUC: 0.6922

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=25, random_state=None)
-- AUC: 0.6728

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=50, random_state=None)
-- AUC: 0.6309

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=50, random_state=None)
-- AUC: 0.6744

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=50, random_state=None)
-- AUC: 0.6940

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None)
-- AUC: 0.7178

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=50, random_state=None)
-- AUC: 0.7121

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=50, random_state=None)
-- AUC: 0.6752

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=50, random_state=None)
-- AUC: 0.6599

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=100, random_state=None)
-- AUC: 0.6476

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=100, random_state=None)
-- AUC: 0.6938

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=100, random_state=None)
-- AUC: 0.6988

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=100, random_state=None)
-- AUC: 0.7123

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=100, random_state=None)
-- AUC: 0.7054

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=100, random_state=None)
-- AUC: 0.6738

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=100, random_state=None)
-- AUC: 0.6676

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=200, random_state=None)
-- AUC: 0.6670

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=200, random_state=None)
-- AUC: 0.6982

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=200, random_state=None)
-- AUC: 0.7107

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=200, random_state=None)
-- AUC: 0.7058

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=200, random_state=None)
-- AUC: 0.6941

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=200, random_state=None)
-- AUC: 0.6637

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=200, random_state=None)
-- AUC: 0.6464

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.001, n_estimators=400, random_state=None)
-- AUC: 0.6932

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.005, n_estimators=400, random_state=None)
-- AUC: 0.7113

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.01, n_estimators=400, random_state=None)
-- AUC: 0.7160

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=400, random_state=None)
-- AUC: 0.6937

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.1, n_estimators=400, random_state=None)
-- AUC: 0.6829

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.5, n_estimators=400, random_state=None)
-- AUC: 0.6508

-- AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1,
          n_estimators=400, random_state=None)
-- AUC: 0.6391

== Best Model for AdaBoostClassifier = AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None), AUC = 0.7178


Done with hyperparameter selection

==========
LogisticRegression
-- best model: LogisticRegression(C=0.0001, class_weight=None, dual=False,
          fit_intercept=True, intercept_scaling=1, penalty='l2',
          random_state=None, tol=0.0001)
-- params: {'penalty': 'l2', 'C': 0.0001, 'fit_intercept': True}
-- Fold #5 test AUC for LogisticRegression: 0.7557

ExtraTreesClassifier
-- best model: ExtraTreesClassifier(bootstrap=False, compute_importances=None,
           criterion='gini', max_depth=10, max_features='auto',
           max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
           min_samples_split=2, n_estimators=200, n_jobs=1,
           oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 200, 'criterion': 'gini', 'max_depth': 10}
-- Fold #5 test AUC for ExtraTreesClassifier: 0.7467

RandomForestClassifier
-- best model: RandomForestClassifier(bootstrap=True, compute_importances=None,
            criterion='entropy', max_depth=None, max_features='auto',
            max_leaf_nodes=None, min_density=None, min_samples_leaf=1,
            min_samples_split=2, n_estimators=100, n_jobs=1,
            oob_score=False, random_state=None, verbose=0)
-- params: {'n_estimators': 100, 'criterion': 'entropy', 'max_depth': None}
-- Fold #5 test AUC for RandomForestClassifier: 0.7114

KNeighborsClassifier
-- best model: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           n_neighbors=31, p=2, weights='uniform')
-- params: {'n_neighbors': 31, 'weights': 'uniform'}
-- Fold #5 test AUC for KNeighborsClassifier: 0.7700

AdaBoostClassifier
-- best model: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
          learning_rate=0.05, n_estimators=50, random_state=None)
-- params: {'n_estimators': 50, 'learning_rate': 0.05}
-- Fold #5 test AUC for AdaBoostClassifier: 0.7418

SVC
-- best model: SVC(C=0.0001, cache_size=200, class_weight=None, coef0=0.0, degree=3,
  gamma=0.05, kernel='rbf', max_iter=-1, probability=True,
  random_state=None, shrinking=True, tol=0.001, verbose=False)
-- params: {'kernel': 'rbf', 'C': 0.0001, 'gamma': 0.05, 'probability': True}
-- Fold #5 test AUC for SVC: 0.7394

LogisticRegression
AUCs [0.72727272727272729, 0.73768939393939403, 0.81669372294372289, 0.75841147269718701, 0.75573883161512023]
mean AUC: 0.7592
median AUC: 0.7557
std AUC: 0.0310
ExtraTreesClassifier
AUCs [0.73457792207792205, 0.71293290043290047, 0.82886904761904756, 0.73000551571980143, 0.7466666666666667]
mean AUC: 0.7506
median AUC: 0.7346
std AUC: 0.0406
KNeighborsClassifier
AUCs [0.73518668831168821, 0.70907738095238093, 0.83285984848484851, 0.69615278543849968, 0.77003436426116834]
mean AUC: 0.7487
median AUC: 0.7352
std AUC: 0.0491
RandomForestClassifier
AUCs [0.73376623376623373, 0.72091450216450226, 0.82941017316017318, 0.73917539988968561, 0.71140893470790378]
mean AUC: 0.7469
median AUC: 0.7338
std AUC: 0.0424
AdaBoostClassifier
AUCs [0.68391504329004327, 0.74235660173160178, 0.80262445887445877, 0.74214009928295643, 0.74178694158075598]
mean AUC: 0.7426
median AUC: 0.7421
std AUC: 0.0375
SVC
AUCs [0.73457792207792205, 0.73795995670995673, 0.81872294372294385, 0.75110314396028677, 0.73938144329896915]
mean AUC: 0.7563
median AUC: 0.7394
std AUC: 0.0317

In [ ]:
import sklearn.cross_validation
print "Baseline", max(Y_Obliteration.mean(), 1-Y_Obliteration.mean()) 

for model in models:
    print model
    model.fit(X
    np.mean(sklearn.cross_validation.cross_val_score(lr, X, Y_Obliteration, cv = 10)) 
print "LR Accuracy", lr_acc 
lr_auc = np.mean(sklearn.cross_validation.cross_val_score(lr, X, Y_Obliteration.astype(bool), cv = 10, scoring='roc_auc')) 
print "LR AUC", lr_auc 
rf_acc = np.mean(sklearn.cross_validation.cross_val_score(rf, X, Y_Obliteration, cv = 10))
print "RF Accuracy", rf_acc 
rf_auc = np.mean(sklearn.cross_validation.cross_val_score(rf, X, Y_Obliteration.astype(bool), cv = 10, scoring='roc_auc'))
print "RF AUC", rf_auc

In [13]:
print "Feature selection by L1-penalized Logistic Regression"
from collections import Counter 
counts = Counter()
feature_list = list(df_in.columns)
for f in feature_list:
    counts[f] = 0
for model_class in [sklearn.svm.LinearSVC, sklearn.linear_model.LogisticRegression]:
    for fraction in [0.6, 0.7, 0.8]:
        for fit_intercept in [False, True]:
            for c in [.02, .04, .08]:
                clf = model_class(penalty = 'l1', C = c, fit_intercept=fit_intercept, dual=False)
                for curr_iter in xrange(100):
                    mask = np.random.rand(len(Y_Obliteration)) > fraction
                    clf.fit(X[mask], Y_Obliteration[mask])
                    good  = np.abs(clf.coef_).ravel() > 0
                    pred = clf.predict(X[~mask])
                    baseline = Y_Obliteration[~mask].mean()
                    baseline = max(baseline, 1-baseline)
                    held_out_accuracy = np.mean(pred == Y_Obliteration[~mask])
                
                    print "%s: C = %0.4f, intercept=%s iter = %d, n_samples = %d/%d, baseline = %0.4f, acc = %0.4f" % (
                        model_class.__name__, c, fit_intercept, curr_iter, mask.sum(), len(mask), baseline, held_out_accuracy
                    )
                    if held_out_accuracy / baseline < 1.05:
                        print "-- skip"
                        continue
                    elif np.all(good):
                        print "-- all features chosen!"
                        continue 
                    curr_features =[feature_list[i] for i,b in enumerate(good) if b]
                    print "--", curr_features
                    
                    for f in curr_features:
                        counts[f] += 1
print counts


Feature selection by L1-penalized Logistic Regression
LinearSVC: C = 0.0200, intercept=False iter = 0, n_samples = 350/862, baseline = 0.5488, acc = 0.6660
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 1, n_samples = 354/862, baseline = 0.5531, acc = 0.6929
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 2, n_samples = 351/862, baseline = 0.5793, acc = 0.7045
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 3, n_samples = 354/862, baseline = 0.5630, acc = 0.7106
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 4, n_samples = 359/862, baseline = 0.5467, acc = 0.6819
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 5, n_samples = 338/862, baseline = 0.5496, acc = 0.7061
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 6, n_samples = 335/862, baseline = 0.5446, acc = 0.6964
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 7, n_samples = 322/862, baseline = 0.5519, acc = 0.6926
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 8, n_samples = 340/862, baseline = 0.5441, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=False iter = 9, n_samples = 340/862, baseline = 0.5326, acc = 0.6858
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 10, n_samples = 327/862, baseline = 0.5364, acc = 0.6991
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 11, n_samples = 344/862, baseline = 0.5521, acc = 0.6950
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 12, n_samples = 344/862, baseline = 0.5560, acc = 0.6757
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 13, n_samples = 351/862, baseline = 0.5479, acc = 0.6751
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 14, n_samples = 354/862, baseline = 0.5295, acc = 0.6713
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 15, n_samples = 336/862, baseline = 0.5551, acc = 0.6920
-- [u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 16, n_samples = 324/862, baseline = 0.5558, acc = 0.6859
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 17, n_samples = 337/862, baseline = 0.5695, acc = 0.7219
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 18, n_samples = 329/862, baseline = 0.5441, acc = 0.6604
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=False iter = 19, n_samples = 363/862, baseline = 0.5451, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 20, n_samples = 328/862, baseline = 0.5225, acc = 0.6610
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 21, n_samples = 360/862, baseline = 0.5837, acc = 0.6992
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 22, n_samples = 338/862, baseline = 0.5515, acc = 0.6603
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 23, n_samples = 332/862, baseline = 0.5396, acc = 0.6792
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 24, n_samples = 351/862, baseline = 0.5577, acc = 0.6791
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 25, n_samples = 343/862, baseline = 0.5530, acc = 0.6879
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 26, n_samples = 361/862, baseline = 0.5509, acc = 0.6647
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 27, n_samples = 329/862, baseline = 0.5235, acc = 0.6604
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 28, n_samples = 345/862, baseline = 0.5609, acc = 0.7041
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 29, n_samples = 337/862, baseline = 0.5219, acc = 0.6762
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 30, n_samples = 348/862, baseline = 0.5486, acc = 0.6654
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 31, n_samples = 342/862, baseline = 0.5404, acc = 0.6731
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 32, n_samples = 360/862, baseline = 0.5518, acc = 0.6892
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 33, n_samples = 357/862, baseline = 0.5267, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 34, n_samples = 337/862, baseline = 0.5486, acc = 0.6686
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 35, n_samples = 334/862, baseline = 0.5473, acc = 0.6799
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=False iter = 36, n_samples = 334/862, baseline = 0.5720, acc = 0.6856
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 37, n_samples = 343/862, baseline = 0.5626, acc = 0.6744
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 38, n_samples = 327/862, baseline = 0.5439, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 39, n_samples = 345/862, baseline = 0.5164, acc = 0.6770
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 40, n_samples = 335/862, baseline = 0.5484, acc = 0.6907
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 41, n_samples = 371/862, baseline = 0.5397, acc = 0.7088
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 42, n_samples = 351/862, baseline = 0.5714, acc = 0.7065
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 43, n_samples = 346/862, baseline = 0.5640, acc = 0.6938
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 44, n_samples = 355/862, baseline = 0.5523, acc = 0.6706
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 45, n_samples = 340/862, baseline = 0.5307, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 46, n_samples = 352/862, baseline = 0.5667, acc = 0.6863
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 47, n_samples = 366/862, baseline = 0.5423, acc = 0.6855
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 48, n_samples = 364/862, baseline = 0.5321, acc = 0.6727
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 49, n_samples = 343/862, baseline = 0.5703, acc = 0.7129
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 50, n_samples = 337/862, baseline = 0.5505, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 51, n_samples = 362/862, baseline = 0.5400, acc = 0.6740
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 52, n_samples = 353/862, baseline = 0.5521, acc = 0.6916
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 53, n_samples = 356/862, baseline = 0.5375, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 54, n_samples = 321/862, baseline = 0.5453, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 55, n_samples = 347/862, baseline = 0.5398, acc = 0.6893
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 56, n_samples = 349/862, baseline = 0.5634, acc = 0.6998
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 57, n_samples = 343/862, baseline = 0.5414, acc = 0.6802
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 58, n_samples = 330/862, baseline = 0.5395, acc = 0.6748
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 59, n_samples = 333/862, baseline = 0.5425, acc = 0.7013
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 60, n_samples = 372/862, baseline = 0.5551, acc = 0.7082
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 61, n_samples = 330/862, baseline = 0.5583, acc = 0.6992
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 62, n_samples = 328/862, baseline = 0.5637, acc = 0.6891
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 63, n_samples = 330/862, baseline = 0.5301, acc = 0.6917
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 64, n_samples = 347/862, baseline = 0.5612, acc = 0.6738
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 65, n_samples = 324/862, baseline = 0.5483, acc = 0.6933
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 66, n_samples = 325/862, baseline = 0.5754, acc = 0.6778
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 67, n_samples = 342/862, baseline = 0.5538, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 68, n_samples = 319/862, baseline = 0.5746, acc = 0.6851
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 69, n_samples = 356/862, baseline = 0.5494, acc = 0.6502
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 70, n_samples = 357/862, baseline = 0.5485, acc = 0.6693
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 71, n_samples = 324/862, baseline = 0.5651, acc = 0.6822
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 72, n_samples = 348/862, baseline = 0.5350, acc = 0.6907
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 73, n_samples = 337/862, baseline = 0.5295, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 74, n_samples = 333/862, baseline = 0.5463, acc = 0.6900
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 75, n_samples = 331/862, baseline = 0.5782, acc = 0.6761
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 76, n_samples = 360/862, baseline = 0.5578, acc = 0.6773
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 77, n_samples = 366/862, baseline = 0.5464, acc = 0.6653
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 78, n_samples = 348/862, baseline = 0.5564, acc = 0.7062
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 79, n_samples = 355/862, baseline = 0.5621, acc = 0.6864
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=False iter = 80, n_samples = 351/862, baseline = 0.5479, acc = 0.6614
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 81, n_samples = 346/862, baseline = 0.5446, acc = 0.6899
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 82, n_samples = 348/862, baseline = 0.5661, acc = 0.7062
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 83, n_samples = 360/862, baseline = 0.5677, acc = 0.6952
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 84, n_samples = 340/862, baseline = 0.5709, acc = 0.7011
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 85, n_samples = 361/862, baseline = 0.5449, acc = 0.6707
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 86, n_samples = 332/862, baseline = 0.5736, acc = 0.6887
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 87, n_samples = 357/862, baseline = 0.5644, acc = 0.6851
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 88, n_samples = 345/862, baseline = 0.5513, acc = 0.6925
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 89, n_samples = 330/862, baseline = 0.5865, acc = 0.6992
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 90, n_samples = 350/862, baseline = 0.5566, acc = 0.6680
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 91, n_samples = 332/862, baseline = 0.5717, acc = 0.7057
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 92, n_samples = 367/862, baseline = 0.5515, acc = 0.7091
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 93, n_samples = 329/862, baseline = 0.5647, acc = 0.6904
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 94, n_samples = 332/862, baseline = 0.5434, acc = 0.6925
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 95, n_samples = 342/862, baseline = 0.5404, acc = 0.6712
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 96, n_samples = 350/862, baseline = 0.5527, acc = 0.6875
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 97, n_samples = 338/862, baseline = 0.5553, acc = 0.6832
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 98, n_samples = 358/862, baseline = 0.5456, acc = 0.6905
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 99, n_samples = 355/862, baseline = 0.5483, acc = 0.7041
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 0, n_samples = 360/862, baseline = 0.5418, acc = 0.6952
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 1, n_samples = 346/862, baseline = 0.5252, acc = 0.6667
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 2, n_samples = 320/862, baseline = 0.5517, acc = 0.6956
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 3, n_samples = 324/862, baseline = 0.5595, acc = 0.7119
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 4, n_samples = 339/862, baseline = 0.5335, acc = 0.6941
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 5, n_samples = 344/862, baseline = 0.5541, acc = 0.6757
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 6, n_samples = 332/862, baseline = 0.5509, acc = 0.6811
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 7, n_samples = 323/862, baseline = 0.5492, acc = 0.7124
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 8, n_samples = 344/862, baseline = 0.5367, acc = 0.7027
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 9, n_samples = 345/862, baseline = 0.5706, acc = 0.7099
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 10, n_samples = 341/862, baseline = 0.5374, acc = 0.6814
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 11, n_samples = 334/862, baseline = 0.5436, acc = 0.7102
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 12, n_samples = 341/862, baseline = 0.5509, acc = 0.6910
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 13, n_samples = 359/862, baseline = 0.5666, acc = 0.7058
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 14, n_samples = 338/862, baseline = 0.5496, acc = 0.6851
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 15, n_samples = 335/862, baseline = 0.5503, acc = 0.6983
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 16, n_samples = 355/862, baseline = 0.5325, acc = 0.6785
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 17, n_samples = 345/862, baseline = 0.5397, acc = 0.6925
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 18, n_samples = 325/862, baseline = 0.5196, acc = 0.6741
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 19, n_samples = 345/862, baseline = 0.5474, acc = 0.7079
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 20, n_samples = 360/862, baseline = 0.5518, acc = 0.6912
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 21, n_samples = 362/862, baseline = 0.5480, acc = 0.6980
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 22, n_samples = 366/862, baseline = 0.5383, acc = 0.6875
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 23, n_samples = 353/862, baseline = 0.5422, acc = 0.6817
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 24, n_samples = 347/862, baseline = 0.5379, acc = 0.6777
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 25, n_samples = 342/862, baseline = 0.5712, acc = 0.7135
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 26, n_samples = 343/862, baseline = 0.5434, acc = 0.6975
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 27, n_samples = 354/862, baseline = 0.5394, acc = 0.6850
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 28, n_samples = 363/862, baseline = 0.5351, acc = 0.7094
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 29, n_samples = 372/862, baseline = 0.5673, acc = 0.6755
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 30, n_samples = 345/862, baseline = 0.5706, acc = 0.6925
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 31, n_samples = 353/862, baseline = 0.5344, acc = 0.6778
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 32, n_samples = 359/862, baseline = 0.5666, acc = 0.6640
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 33, n_samples = 320/862, baseline = 0.5535, acc = 0.6863
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 34, n_samples = 340/862, baseline = 0.5383, acc = 0.6935
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 35, n_samples = 352/862, baseline = 0.5431, acc = 0.6980
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 36, n_samples = 352/862, baseline = 0.5412, acc = 0.6922
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 37, n_samples = 334/862, baseline = 0.5455, acc = 0.6667
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 38, n_samples = 344/862, baseline = 0.5425, acc = 0.6776
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 39, n_samples = 343/862, baseline = 0.5279, acc = 0.7129
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 40, n_samples = 324/862, baseline = 0.5520, acc = 0.6896
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 41, n_samples = 339/862, baseline = 0.5621, acc = 0.6902
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 42, n_samples = 350/862, baseline = 0.5508, acc = 0.6582
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 43, n_samples = 338/862, baseline = 0.5439, acc = 0.7042
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 44, n_samples = 334/862, baseline = 0.5398, acc = 0.6989
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 45, n_samples = 353/862, baseline = 0.5363, acc = 0.6719
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 46, n_samples = 339/862, baseline = 0.5507, acc = 0.7208
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 47, n_samples = 343/862, baseline = 0.5626, acc = 0.6975
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 48, n_samples = 352/862, baseline = 0.5627, acc = 0.7020
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 49, n_samples = 340/862, baseline = 0.5785, acc = 0.6973
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 50, n_samples = 333/862, baseline = 0.5388, acc = 0.6975
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 51, n_samples = 350/862, baseline = 0.5449, acc = 0.7227
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 52, n_samples = 327/862, baseline = 0.5495, acc = 0.6841
-- [u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 53, n_samples = 353/862, baseline = 0.5658, acc = 0.6837
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 54, n_samples = 315/862, baseline = 0.5612, acc = 0.7020
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 55, n_samples = 334/862, baseline = 0.5777, acc = 0.6894
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 56, n_samples = 333/862, baseline = 0.5709, acc = 0.6919
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 57, n_samples = 347/862, baseline = 0.5301, acc = 0.6971
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 58, n_samples = 339/862, baseline = 0.5793, acc = 0.6922
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 59, n_samples = 354/862, baseline = 0.5551, acc = 0.6732
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 60, n_samples = 354/862, baseline = 0.5610, acc = 0.6870
-- [u'Sex', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 61, n_samples = 370/862, baseline = 0.5386, acc = 0.7256
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 62, n_samples = 355/862, baseline = 0.5661, acc = 0.6824
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 63, n_samples = 364/862, baseline = 0.5542, acc = 0.6647
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 64, n_samples = 335/862, baseline = 0.5427, acc = 0.6983
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 65, n_samples = 331/862, baseline = 0.5574, acc = 0.6968
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 66, n_samples = 341/862, baseline = 0.5413, acc = 0.6891
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 67, n_samples = 345/862, baseline = 0.5609, acc = 0.6983
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 68, n_samples = 351/862, baseline = 0.5538, acc = 0.6947
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 69, n_samples = 346/862, baseline = 0.5465, acc = 0.6899
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 70, n_samples = 326/862, baseline = 0.5485, acc = 0.6996
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 71, n_samples = 360/862, baseline = 0.5478, acc = 0.6833
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 72, n_samples = 351/862, baseline = 0.5519, acc = 0.6888
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 73, n_samples = 380/862, baseline = 0.5664, acc = 0.6971
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 74, n_samples = 347/862, baseline = 0.5495, acc = 0.6835
-- ['Age', u'SM', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 75, n_samples = 331/862, baseline = 0.5461, acc = 0.6874
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 76, n_samples = 351/862, baseline = 0.5421, acc = 0.6830
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 77, n_samples = 334/862, baseline = 0.5625, acc = 0.7027
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 78, n_samples = 354/862, baseline = 0.5354, acc = 0.6831
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 79, n_samples = 350/862, baseline = 0.5605, acc = 0.6758
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 80, n_samples = 358/862, baseline = 0.5456, acc = 0.7103
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 81, n_samples = 335/862, baseline = 0.5503, acc = 0.7173
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 82, n_samples = 346/862, baseline = 0.5446, acc = 0.7093
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 83, n_samples = 365/862, baseline = 0.5433, acc = 0.6901
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 84, n_samples = 373/862, baseline = 0.5440, acc = 0.6892
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 85, n_samples = 367/862, baseline = 0.5212, acc = 0.6626
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 86, n_samples = 336/862, baseline = 0.5513, acc = 0.7281
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 87, n_samples = 352/862, baseline = 0.5412, acc = 0.6941
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 88, n_samples = 345/862, baseline = 0.5706, acc = 0.6789
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 89, n_samples = 370/862, baseline = 0.5346, acc = 0.6911
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 90, n_samples = 365/862, baseline = 0.5553, acc = 0.6781
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 91, n_samples = 340/862, baseline = 0.5709, acc = 0.7126
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 92, n_samples = 348/862, baseline = 0.5661, acc = 0.6965
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 93, n_samples = 358/862, baseline = 0.5675, acc = 0.7123
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 94, n_samples = 357/862, baseline = 0.5347, acc = 0.6693
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 95, n_samples = 359/862, baseline = 0.5606, acc = 0.6879
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 96, n_samples = 352/862, baseline = 0.5333, acc = 0.6882
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 97, n_samples = 347/862, baseline = 0.5845, acc = 0.6913
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 98, n_samples = 372/862, baseline = 0.5286, acc = 0.6796
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 99, n_samples = 332/862, baseline = 0.5736, acc = 0.6755
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 0, n_samples = 357/862, baseline = 0.5624, acc = 0.6891
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 1, n_samples = 341/862, baseline = 0.5413, acc = 0.6987
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 2, n_samples = 344/862, baseline = 0.5483, acc = 0.6892
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 3, n_samples = 351/862, baseline = 0.5323, acc = 0.6869
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 4, n_samples = 347/862, baseline = 0.5689, acc = 0.7010
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 5, n_samples = 360/862, baseline = 0.5717, acc = 0.6932
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 6, n_samples = 342/862, baseline = 0.5481, acc = 0.6885
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 7, n_samples = 372/862, baseline = 0.5551, acc = 0.7041
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 8, n_samples = 325/862, baseline = 0.5605, acc = 0.6797
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 9, n_samples = 354/862, baseline = 0.5531, acc = 0.7146
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 10, n_samples = 354/862, baseline = 0.5118, acc = 0.6831
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 11, n_samples = 352/862, baseline = 0.5333, acc = 0.6882
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 12, n_samples = 348/862, baseline = 0.5389, acc = 0.7160
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 13, n_samples = 338/862, baseline = 0.5611, acc = 0.7042
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 14, n_samples = 350/862, baseline = 0.5430, acc = 0.6953
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 15, n_samples = 358/862, baseline = 0.5853, acc = 0.7183
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 16, n_samples = 348/862, baseline = 0.5253, acc = 0.6751
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 17, n_samples = 342/862, baseline = 0.5577, acc = 0.7038
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 18, n_samples = 331/862, baseline = 0.5537, acc = 0.7043
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 19, n_samples = 331/862, baseline = 0.5443, acc = 0.6968
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 20, n_samples = 346/862, baseline = 0.5620, acc = 0.7093
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 21, n_samples = 319/862, baseline = 0.5709, acc = 0.6832
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 22, n_samples = 328/862, baseline = 0.5524, acc = 0.6742
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 23, n_samples = 340/862, baseline = 0.5402, acc = 0.6954
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 24, n_samples = 354/862, baseline = 0.5295, acc = 0.6634
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 25, n_samples = 320/862, baseline = 0.5572, acc = 0.6642
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 26, n_samples = 348/862, baseline = 0.5272, acc = 0.6965
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 27, n_samples = 364/862, baseline = 0.5602, acc = 0.6908
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 28, n_samples = 351/862, baseline = 0.5342, acc = 0.6869
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 29, n_samples = 329/862, baseline = 0.5666, acc = 0.7186
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 30, n_samples = 352/862, baseline = 0.5412, acc = 0.6784
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 31, n_samples = 360/862, baseline = 0.5538, acc = 0.7112
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 32, n_samples = 348/862, baseline = 0.5623, acc = 0.6965
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 33, n_samples = 357/862, baseline = 0.5267, acc = 0.6832
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 34, n_samples = 343/862, baseline = 0.5665, acc = 0.7187
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 35, n_samples = 387/862, baseline = 0.5263, acc = 0.6968
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 36, n_samples = 361/862, baseline = 0.5329, acc = 0.6687
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 37, n_samples = 340/862, baseline = 0.5441, acc = 0.7280
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 38, n_samples = 351/862, baseline = 0.5597, acc = 0.7065
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 39, n_samples = 335/862, baseline = 0.5598, acc = 0.6983
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 40, n_samples = 356/862, baseline = 0.5494, acc = 0.7095
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 41, n_samples = 355/862, baseline = 0.5700, acc = 0.7140
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 42, n_samples = 352/862, baseline = 0.5588, acc = 0.7098
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 43, n_samples = 347/862, baseline = 0.5689, acc = 0.6680
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 44, n_samples = 347/862, baseline = 0.5417, acc = 0.6990
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 45, n_samples = 353/862, baseline = 0.5560, acc = 0.7014
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 46, n_samples = 359/862, baseline = 0.5507, acc = 0.7018
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 47, n_samples = 348/862, baseline = 0.5311, acc = 0.6907
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 48, n_samples = 341/862, baseline = 0.5355, acc = 0.6756
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 49, n_samples = 341/862, baseline = 0.5605, acc = 0.7102
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 50, n_samples = 346/862, baseline = 0.5620, acc = 0.7016
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 51, n_samples = 339/862, baseline = 0.5430, acc = 0.6979
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 52, n_samples = 334/862, baseline = 0.5720, acc = 0.6648
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 53, n_samples = 334/862, baseline = 0.5682, acc = 0.7140
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 54, n_samples = 353/862, baseline = 0.5540, acc = 0.6857
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 55, n_samples = 338/862, baseline = 0.5630, acc = 0.7023
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 56, n_samples = 359/862, baseline = 0.5507, acc = 0.6839
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 57, n_samples = 334/862, baseline = 0.5663, acc = 0.6932
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 58, n_samples = 338/862, baseline = 0.5821, acc = 0.7042
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 59, n_samples = 341/862, baseline = 0.5509, acc = 0.6948
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 60, n_samples = 346/862, baseline = 0.5523, acc = 0.7035
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 61, n_samples = 341/862, baseline = 0.5413, acc = 0.6737
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 62, n_samples = 326/862, baseline = 0.5205, acc = 0.6884
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 63, n_samples = 347/862, baseline = 0.5495, acc = 0.7068
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 64, n_samples = 360/862, baseline = 0.5458, acc = 0.6873
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 65, n_samples = 335/862, baseline = 0.5541, acc = 0.6850
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 66, n_samples = 333/862, baseline = 0.5463, acc = 0.6786
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 67, n_samples = 341/862, baseline = 0.5605, acc = 0.6929
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 68, n_samples = 327/862, baseline = 0.5477, acc = 0.7121
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 69, n_samples = 348/862, baseline = 0.5467, acc = 0.7004
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 70, n_samples = 348/862, baseline = 0.5467, acc = 0.6887
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 71, n_samples = 356/862, baseline = 0.5553, acc = 0.7055
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 72, n_samples = 322/862, baseline = 0.5593, acc = 0.7093
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 73, n_samples = 357/862, baseline = 0.5525, acc = 0.7109
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 74, n_samples = 303/862, baseline = 0.5331, acc = 0.7030
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 75, n_samples = 332/862, baseline = 0.5340, acc = 0.6774
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 76, n_samples = 353/862, baseline = 0.5560, acc = 0.6837
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 77, n_samples = 344/862, baseline = 0.5579, acc = 0.7143
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 78, n_samples = 369/862, baseline = 0.5700, acc = 0.7039
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 79, n_samples = 354/862, baseline = 0.5591, acc = 0.6772
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 80, n_samples = 322/862, baseline = 0.5370, acc = 0.6815
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 81, n_samples = 337/862, baseline = 0.5524, acc = 0.6857
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 82, n_samples = 322/862, baseline = 0.5574, acc = 0.7074
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 83, n_samples = 340/862, baseline = 0.5632, acc = 0.7011
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 84, n_samples = 348/862, baseline = 0.5739, acc = 0.7082
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 85, n_samples = 338/862, baseline = 0.5363, acc = 0.6908
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 86, n_samples = 375/862, baseline = 0.5298, acc = 0.6982
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 87, n_samples = 358/862, baseline = 0.5536, acc = 0.7143
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 88, n_samples = 347/862, baseline = 0.5417, acc = 0.6990
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 89, n_samples = 337/862, baseline = 0.5524, acc = 0.7219
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 90, n_samples = 336/862, baseline = 0.5856, acc = 0.6692
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 91, n_samples = 333/862, baseline = 0.5331, acc = 0.6767
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 92, n_samples = 349/862, baseline = 0.5750, acc = 0.7115
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 93, n_samples = 358/862, baseline = 0.5575, acc = 0.7103
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 94, n_samples = 339/862, baseline = 0.5315, acc = 0.6883
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 95, n_samples = 349/862, baseline = 0.5283, acc = 0.6745
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 96, n_samples = 341/862, baseline = 0.5393, acc = 0.6967
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 97, n_samples = 326/862, baseline = 0.5373, acc = 0.6698
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 98, n_samples = 328/862, baseline = 0.5468, acc = 0.6929
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 99, n_samples = 341/862, baseline = 0.5547, acc = 0.6948
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=True iter = 0, n_samples = 370/862, baseline = 0.5589, acc = 0.6911
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 1, n_samples = 340/862, baseline = 0.5402, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 2, n_samples = 335/862, baseline = 0.5522, acc = 0.6926
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 3, n_samples = 354/862, baseline = 0.5374, acc = 0.6811
-- [u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 4, n_samples = 350/862, baseline = 0.5469, acc = 0.6680
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 5, n_samples = 313/862, baseline = 0.5683, acc = 0.6831
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 6, n_samples = 346/862, baseline = 0.5368, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 7, n_samples = 326/862, baseline = 0.5653, acc = 0.6586
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 8, n_samples = 328/862, baseline = 0.5524, acc = 0.6966
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 9, n_samples = 358/862, baseline = 0.5377, acc = 0.6667
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=True iter = 10, n_samples = 337/862, baseline = 0.5467, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 11, n_samples = 360/862, baseline = 0.5398, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 12, n_samples = 335/862, baseline = 0.5104, acc = 0.6584
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 13, n_samples = 345/862, baseline = 0.5648, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 14, n_samples = 298/862, baseline = 0.5567, acc = 0.7128
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 15, n_samples = 321/862, baseline = 0.5619, acc = 0.6858
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 16, n_samples = 319/862, baseline = 0.5562, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 17, n_samples = 353/862, baseline = 0.5540, acc = 0.6719
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 18, n_samples = 331/862, baseline = 0.5612, acc = 0.6874
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=True iter = 19, n_samples = 331/862, baseline = 0.5650, acc = 0.6874
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 20, n_samples = 355/862, baseline = 0.5424, acc = 0.6963
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 21, n_samples = 334/862, baseline = 0.5398, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 22, n_samples = 350/862, baseline = 0.5684, acc = 0.6758
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 23, n_samples = 347/862, baseline = 0.5709, acc = 0.7087
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 24, n_samples = 350/862, baseline = 0.5625, acc = 0.7012
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 25, n_samples = 332/862, baseline = 0.5377, acc = 0.6830
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 26, n_samples = 359/862, baseline = 0.5388, acc = 0.6819
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 27, n_samples = 369/862, baseline = 0.5335, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 28, n_samples = 367/862, baseline = 0.5354, acc = 0.6909
-- [u'Sex', 'Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 29, n_samples = 313/862, baseline = 0.5592, acc = 0.7013
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 30, n_samples = 338/862, baseline = 0.5573, acc = 0.7214
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 31, n_samples = 341/862, baseline = 0.5374, acc = 0.6967
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 32, n_samples = 323/862, baseline = 0.5436, acc = 0.6920
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 33, n_samples = 364/862, baseline = 0.5683, acc = 0.6888
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 34, n_samples = 337/862, baseline = 0.5600, acc = 0.7143
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 35, n_samples = 335/862, baseline = 0.5332, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 36, n_samples = 332/862, baseline = 0.5283, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 37, n_samples = 355/862, baseline = 0.5582, acc = 0.6963
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 38, n_samples = 352/862, baseline = 0.5627, acc = 0.7098
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 39, n_samples = 342/862, baseline = 0.5404, acc = 0.6846
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 40, n_samples = 331/862, baseline = 0.5480, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 41, n_samples = 348/862, baseline = 0.5331, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 42, n_samples = 345/862, baseline = 0.5725, acc = 0.7002
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 43, n_samples = 351/862, baseline = 0.5695, acc = 0.6654
-- ['Age', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 44, n_samples = 359/862, baseline = 0.5249, acc = 0.6620
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 45, n_samples = 337/862, baseline = 0.5486, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 46, n_samples = 335/862, baseline = 0.5712, acc = 0.6812
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 47, n_samples = 340/862, baseline = 0.5326, acc = 0.6628
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 48, n_samples = 351/862, baseline = 0.5245, acc = 0.6967
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 49, n_samples = 340/862, baseline = 0.5536, acc = 0.6897
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 50, n_samples = 333/862, baseline = 0.5274, acc = 0.6711
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 51, n_samples = 359/862, baseline = 0.5249, acc = 0.6859
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 52, n_samples = 352/862, baseline = 0.5529, acc = 0.6608
-- [u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 53, n_samples = 367/862, baseline = 0.5616, acc = 0.6869
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 54, n_samples = 344/862, baseline = 0.5290, acc = 0.6757
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 55, n_samples = 319/862, baseline = 0.5488, acc = 0.6943
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 56, n_samples = 320/862, baseline = 0.5646, acc = 0.6827
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 57, n_samples = 322/862, baseline = 0.5611, acc = 0.6852
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 58, n_samples = 324/862, baseline = 0.5390, acc = 0.6877
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 59, n_samples = 335/862, baseline = 0.5598, acc = 0.6869
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 60, n_samples = 344/862, baseline = 0.5328, acc = 0.7027
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 61, n_samples = 347/862, baseline = 0.5786, acc = 0.6951
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 62, n_samples = 360/862, baseline = 0.5518, acc = 0.6932
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 63, n_samples = 340/862, baseline = 0.5479, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 64, n_samples = 355/862, baseline = 0.5365, acc = 0.7061
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 65, n_samples = 332/862, baseline = 0.5396, acc = 0.6925
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 66, n_samples = 357/862, baseline = 0.5584, acc = 0.7089
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 67, n_samples = 340/862, baseline = 0.5670, acc = 0.6762
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 68, n_samples = 325/862, baseline = 0.5549, acc = 0.6685
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 69, n_samples = 331/862, baseline = 0.5631, acc = 0.6930
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 70, n_samples = 368/862, baseline = 0.5445, acc = 0.6943
-- [u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 71, n_samples = 325/862, baseline = 0.5568, acc = 0.6741
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 72, n_samples = 346/862, baseline = 0.5659, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 73, n_samples = 367/862, baseline = 0.5515, acc = 0.7051
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 74, n_samples = 347/862, baseline = 0.5417, acc = 0.7010
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 75, n_samples = 367/862, baseline = 0.5657, acc = 0.7010
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 76, n_samples = 355/862, baseline = 0.5345, acc = 0.6844
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 77, n_samples = 363/862, baseline = 0.5551, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 78, n_samples = 337/862, baseline = 0.5505, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 79, n_samples = 326/862, baseline = 0.5765, acc = 0.6922
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 80, n_samples = 367/862, baseline = 0.5374, acc = 0.7010
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 81, n_samples = 331/862, baseline = 0.5631, acc = 0.6460
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 82, n_samples = 341/862, baseline = 0.5547, acc = 0.7044
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 83, n_samples = 349/862, baseline = 0.5653, acc = 0.6784
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 84, n_samples = 354/862, baseline = 0.5630, acc = 0.6890
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 85, n_samples = 339/862, baseline = 0.5468, acc = 0.7055
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 86, n_samples = 330/862, baseline = 0.5282, acc = 0.6729
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 87, n_samples = 339/862, baseline = 0.5430, acc = 0.6539
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 88, n_samples = 343/862, baseline = 0.5376, acc = 0.6802
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 89, n_samples = 369/862, baseline = 0.5477, acc = 0.6876
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 90, n_samples = 362/862, baseline = 0.5700, acc = 0.6720
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 91, n_samples = 358/862, baseline = 0.5218, acc = 0.6627
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 92, n_samples = 339/862, baseline = 0.5564, acc = 0.7094
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 93, n_samples = 323/862, baseline = 0.5659, acc = 0.6994
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 94, n_samples = 351/862, baseline = 0.5656, acc = 0.7006
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 95, n_samples = 333/862, baseline = 0.5406, acc = 0.6767
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 96, n_samples = 342/862, baseline = 0.5462, acc = 0.6692
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 97, n_samples = 338/862, baseline = 0.5496, acc = 0.6775
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 98, n_samples = 342/862, baseline = 0.5558, acc = 0.6923
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 99, n_samples = 331/862, baseline = 0.5292, acc = 0.6836
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 0, n_samples = 360/862, baseline = 0.5299, acc = 0.6793
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 1, n_samples = 363/862, baseline = 0.5531, acc = 0.7014
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 2, n_samples = 335/862, baseline = 0.5541, acc = 0.6736
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 3, n_samples = 352/862, baseline = 0.5569, acc = 0.6843
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 4, n_samples = 342/862, baseline = 0.5481, acc = 0.6904
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 5, n_samples = 317/862, baseline = 0.5523, acc = 0.6807
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 6, n_samples = 346/862, baseline = 0.5484, acc = 0.6977
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 7, n_samples = 350/862, baseline = 0.5371, acc = 0.6699
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 8, n_samples = 343/862, baseline = 0.5549, acc = 0.6763
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 9, n_samples = 372/862, baseline = 0.5469, acc = 0.6878
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 10, n_samples = 314/862, baseline = 0.5547, acc = 0.7135
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 11, n_samples = 336/862, baseline = 0.5399, acc = 0.7053
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 12, n_samples = 355/862, baseline = 0.5562, acc = 0.6884
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 13, n_samples = 336/862, baseline = 0.5418, acc = 0.6920
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 14, n_samples = 352/862, baseline = 0.5451, acc = 0.6843
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 15, n_samples = 353/862, baseline = 0.5678, acc = 0.7073
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 16, n_samples = 354/862, baseline = 0.5630, acc = 0.7047
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 17, n_samples = 323/862, baseline = 0.5139, acc = 0.6605
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 18, n_samples = 351/862, baseline = 0.5597, acc = 0.7104
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 19, n_samples = 346/862, baseline = 0.5581, acc = 0.6977
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 20, n_samples = 335/862, baseline = 0.5560, acc = 0.6812
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 21, n_samples = 368/862, baseline = 0.5243, acc = 0.6802
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 22, n_samples = 332/862, baseline = 0.5472, acc = 0.7000
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 23, n_samples = 352/862, baseline = 0.5784, acc = 0.7098
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 24, n_samples = 352/862, baseline = 0.5510, acc = 0.6804
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 25, n_samples = 341/862, baseline = 0.5701, acc = 0.7044
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 26, n_samples = 346/862, baseline = 0.5543, acc = 0.6938
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 27, n_samples = 336/862, baseline = 0.5779, acc = 0.7015
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 28, n_samples = 367/862, baseline = 0.5475, acc = 0.6869
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 29, n_samples = 344/862, baseline = 0.5618, acc = 0.6776
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 30, n_samples = 317/862, baseline = 0.5578, acc = 0.7046
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 31, n_samples = 350/862, baseline = 0.5273, acc = 0.6680
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 32, n_samples = 331/862, baseline = 0.5348, acc = 0.6798
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 33, n_samples = 355/862, baseline = 0.5641, acc = 0.6864
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 34, n_samples = 328/862, baseline = 0.5487, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 35, n_samples = 341/862, baseline = 0.5451, acc = 0.7025
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 36, n_samples = 337/862, baseline = 0.5276, acc = 0.6914
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 37, n_samples = 364/862, baseline = 0.5582, acc = 0.7129
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 38, n_samples = 355/862, baseline = 0.5247, acc = 0.6805
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 39, n_samples = 348/862, baseline = 0.5603, acc = 0.6556
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 40, n_samples = 360/862, baseline = 0.5677, acc = 0.7032
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 41, n_samples = 332/862, baseline = 0.5472, acc = 0.6943
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 42, n_samples = 341/862, baseline = 0.5605, acc = 0.6948
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 43, n_samples = 337/862, baseline = 0.5467, acc = 0.6914
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 44, n_samples = 365/862, baseline = 0.5473, acc = 0.6901
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 45, n_samples = 358/862, baseline = 0.5575, acc = 0.7063
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 46, n_samples = 318/862, baseline = 0.5515, acc = 0.7022
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 47, n_samples = 357/862, baseline = 0.5446, acc = 0.7010
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 48, n_samples = 342/862, baseline = 0.5712, acc = 0.7038
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 49, n_samples = 344/862, baseline = 0.5463, acc = 0.6795
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 50, n_samples = 359/862, baseline = 0.5447, acc = 0.6978
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 51, n_samples = 342/862, baseline = 0.5615, acc = 0.6750
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 52, n_samples = 338/862, baseline = 0.5553, acc = 0.6870
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 53, n_samples = 331/862, baseline = 0.5518, acc = 0.7062
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 54, n_samples = 342/862, baseline = 0.5250, acc = 0.6846
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 55, n_samples = 350/862, baseline = 0.5566, acc = 0.6992
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 56, n_samples = 343/862, baseline = 0.5279, acc = 0.6898
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 57, n_samples = 360/862, baseline = 0.5677, acc = 0.6892
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 58, n_samples = 327/862, baseline = 0.5551, acc = 0.6991
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 59, n_samples = 338/862, baseline = 0.5515, acc = 0.6832
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 60, n_samples = 356/862, baseline = 0.5593, acc = 0.7016
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 61, n_samples = 352/862, baseline = 0.5608, acc = 0.7176
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 62, n_samples = 356/862, baseline = 0.5356, acc = 0.6957
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 63, n_samples = 336/862, baseline = 0.5646, acc = 0.7034
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 64, n_samples = 335/862, baseline = 0.5522, acc = 0.7040
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 65, n_samples = 358/862, baseline = 0.5575, acc = 0.7004
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 66, n_samples = 346/862, baseline = 0.5349, acc = 0.6977
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 67, n_samples = 319/862, baseline = 0.5562, acc = 0.6777
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 68, n_samples = 338/862, baseline = 0.5363, acc = 0.6908
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 69, n_samples = 351/862, baseline = 0.5636, acc = 0.7025
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 70, n_samples = 345/862, baseline = 0.5532, acc = 0.7060
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 71, n_samples = 363/862, baseline = 0.5731, acc = 0.7054
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 72, n_samples = 342/862, baseline = 0.5288, acc = 0.6692
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 73, n_samples = 355/862, baseline = 0.5621, acc = 0.7022
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 74, n_samples = 340/862, baseline = 0.5364, acc = 0.6858
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 75, n_samples = 328/862, baseline = 0.5693, acc = 0.6985
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 76, n_samples = 361/862, baseline = 0.5369, acc = 0.6766
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 77, n_samples = 331/862, baseline = 0.5518, acc = 0.6723
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 78, n_samples = 349/862, baseline = 0.5419, acc = 0.6998
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 79, n_samples = 352/862, baseline = 0.5451, acc = 0.6824
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 80, n_samples = 359/862, baseline = 0.5368, acc = 0.6879
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 81, n_samples = 336/862, baseline = 0.5361, acc = 0.6996
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 82, n_samples = 341/862, baseline = 0.5720, acc = 0.7198
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 83, n_samples = 331/862, baseline = 0.5424, acc = 0.6930
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 84, n_samples = 345/862, baseline = 0.5783, acc = 0.6905
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 85, n_samples = 349/862, baseline = 0.5575, acc = 0.7096
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 86, n_samples = 365/862, baseline = 0.5634, acc = 0.6620
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 87, n_samples = 315/862, baseline = 0.5521, acc = 0.7038
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 88, n_samples = 337/862, baseline = 0.5562, acc = 0.6990
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 89, n_samples = 360/862, baseline = 0.5279, acc = 0.7072
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 90, n_samples = 367/862, baseline = 0.5354, acc = 0.6869
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 91, n_samples = 335/862, baseline = 0.5427, acc = 0.6983
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 92, n_samples = 341/862, baseline = 0.5547, acc = 0.6814
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 93, n_samples = 348/862, baseline = 0.5739, acc = 0.6965
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 94, n_samples = 337/862, baseline = 0.5524, acc = 0.7162
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 95, n_samples = 357/862, baseline = 0.5564, acc = 0.6950
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 96, n_samples = 333/862, baseline = 0.5312, acc = 0.6767
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 97, n_samples = 323/862, baseline = 0.5584, acc = 0.6809
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 98, n_samples = 348/862, baseline = 0.5506, acc = 0.6965
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 99, n_samples = 368/862, baseline = 0.5607, acc = 0.6862
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 0, n_samples = 351/862, baseline = 0.5538, acc = 0.7104
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 1, n_samples = 372/862, baseline = 0.5694, acc = 0.7020
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 2, n_samples = 350/862, baseline = 0.5547, acc = 0.6953
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 3, n_samples = 319/862, baseline = 0.5433, acc = 0.6832
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 4, n_samples = 343/862, baseline = 0.5530, acc = 0.6917
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 5, n_samples = 349/862, baseline = 0.5146, acc = 0.6764
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 6, n_samples = 337/862, baseline = 0.5524, acc = 0.6971
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 7, n_samples = 341/862, baseline = 0.5662, acc = 0.6967
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 8, n_samples = 325/862, baseline = 0.5531, acc = 0.7076
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 9, n_samples = 346/862, baseline = 0.5581, acc = 0.7054
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 10, n_samples = 369/862, baseline = 0.5598, acc = 0.7241
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 11, n_samples = 351/862, baseline = 0.5538, acc = 0.6888
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 12, n_samples = 346/862, baseline = 0.5446, acc = 0.7112
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 13, n_samples = 344/862, baseline = 0.5251, acc = 0.6892
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 14, n_samples = 351/862, baseline = 0.5636, acc = 0.6869
-- [u'Sex', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 15, n_samples = 346/862, baseline = 0.5349, acc = 0.6977
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 16, n_samples = 360/862, baseline = 0.5558, acc = 0.7112
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 17, n_samples = 349/862, baseline = 0.5361, acc = 0.6901
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 18, n_samples = 355/862, baseline = 0.5523, acc = 0.6963
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 19, n_samples = 345/862, baseline = 0.5474, acc = 0.6867
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 20, n_samples = 342/862, baseline = 0.5365, acc = 0.6962
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 21, n_samples = 321/862, baseline = 0.5656, acc = 0.7098
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 22, n_samples = 345/862, baseline = 0.5358, acc = 0.6867
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 23, n_samples = 357/862, baseline = 0.5366, acc = 0.6871
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0800, intercept=True iter = 24, n_samples = 360/862, baseline = 0.5378, acc = 0.6853
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 25, n_samples = 352/862, baseline = 0.5667, acc = 0.6765
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 26, n_samples = 351/862, baseline = 0.5519, acc = 0.6751
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 27, n_samples = 338/862, baseline = 0.5592, acc = 0.6908
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 28, n_samples = 328/862, baseline = 0.5693, acc = 0.7191
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 29, n_samples = 359/862, baseline = 0.5507, acc = 0.6958
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 30, n_samples = 373/862, baseline = 0.5706, acc = 0.7301
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 31, n_samples = 363/862, baseline = 0.5731, acc = 0.6713
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 32, n_samples = 353/862, baseline = 0.5501, acc = 0.7092
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 33, n_samples = 342/862, baseline = 0.5500, acc = 0.6885
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 34, n_samples = 360/862, baseline = 0.5518, acc = 0.6813
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 35, n_samples = 334/862, baseline = 0.5417, acc = 0.6799
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 36, n_samples = 318/862, baseline = 0.5515, acc = 0.6857
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 37, n_samples = 366/862, baseline = 0.5685, acc = 0.6996
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 38, n_samples = 363/862, baseline = 0.5651, acc = 0.6894
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 39, n_samples = 352/862, baseline = 0.5471, acc = 0.6902
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 40, n_samples = 328/862, baseline = 0.5543, acc = 0.6985
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 41, n_samples = 345/862, baseline = 0.5435, acc = 0.7253
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 42, n_samples = 349/862, baseline = 0.5595, acc = 0.7193
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 43, n_samples = 364/862, baseline = 0.5582, acc = 0.6988
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 44, n_samples = 364/862, baseline = 0.5602, acc = 0.7249
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 45, n_samples = 327/862, baseline = 0.5589, acc = 0.6953
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 46, n_samples = 357/862, baseline = 0.5604, acc = 0.6911
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 47, n_samples = 318/862, baseline = 0.5588, acc = 0.6893
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 48, n_samples = 354/862, baseline = 0.5610, acc = 0.6516
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 49, n_samples = 379/862, baseline = 0.5569, acc = 0.7516
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 50, n_samples = 353/862, baseline = 0.5383, acc = 0.7033
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 51, n_samples = 355/862, baseline = 0.5464, acc = 0.6903
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 52, n_samples = 352/862, baseline = 0.5490, acc = 0.7059
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 53, n_samples = 364/862, baseline = 0.5402, acc = 0.7088
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 54, n_samples = 326/862, baseline = 0.5541, acc = 0.6940
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 55, n_samples = 350/862, baseline = 0.5547, acc = 0.6914
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 56, n_samples = 333/862, baseline = 0.5482, acc = 0.6975
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 57, n_samples = 339/862, baseline = 0.5392, acc = 0.6769
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 58, n_samples = 364/862, baseline = 0.5442, acc = 0.7088
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 59, n_samples = 334/862, baseline = 0.5682, acc = 0.7159
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 60, n_samples = 354/862, baseline = 0.5531, acc = 0.7008
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 61, n_samples = 333/862, baseline = 0.5558, acc = 0.7070
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 62, n_samples = 312/862, baseline = 0.5564, acc = 0.6909
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 63, n_samples = 374/862, baseline = 0.5594, acc = 0.7295
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 64, n_samples = 323/862, baseline = 0.5510, acc = 0.7143
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 65, n_samples = 357/862, baseline = 0.5545, acc = 0.6752
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 66, n_samples = 322/862, baseline = 0.5667, acc = 0.6944
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 67, n_samples = 334/862, baseline = 0.5568, acc = 0.7102
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 68, n_samples = 340/862, baseline = 0.5287, acc = 0.7184
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 69, n_samples = 312/862, baseline = 0.5491, acc = 0.6927
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 70, n_samples = 348/862, baseline = 0.5467, acc = 0.7062
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 71, n_samples = 374/862, baseline = 0.5533, acc = 0.7070
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 72, n_samples = 327/862, baseline = 0.5439, acc = 0.7009
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 73, n_samples = 347/862, baseline = 0.5515, acc = 0.6932
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 74, n_samples = 326/862, baseline = 0.5634, acc = 0.6754
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 75, n_samples = 349/862, baseline = 0.5673, acc = 0.6901
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 76, n_samples = 343/862, baseline = 0.5164, acc = 0.6917
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 77, n_samples = 356/862, baseline = 0.5613, acc = 0.7134
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 78, n_samples = 350/862, baseline = 0.5566, acc = 0.6992
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 79, n_samples = 363/862, baseline = 0.5651, acc = 0.6914
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 80, n_samples = 340/862, baseline = 0.5556, acc = 0.6992
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 81, n_samples = 332/862, baseline = 0.5415, acc = 0.6755
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 82, n_samples = 358/862, baseline = 0.5476, acc = 0.6905
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 83, n_samples = 331/862, baseline = 0.5593, acc = 0.6685
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 84, n_samples = 360/862, baseline = 0.5737, acc = 0.7032
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 85, n_samples = 326/862, baseline = 0.5709, acc = 0.6847
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 86, n_samples = 329/862, baseline = 0.5591, acc = 0.7223
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 87, n_samples = 359/862, baseline = 0.5447, acc = 0.7137
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 88, n_samples = 336/862, baseline = 0.5646, acc = 0.7053
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 89, n_samples = 354/862, baseline = 0.5453, acc = 0.6870
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 90, n_samples = 333/862, baseline = 0.5425, acc = 0.6919
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 91, n_samples = 320/862, baseline = 0.5351, acc = 0.6845
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 92, n_samples = 319/862, baseline = 0.5635, acc = 0.7017
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 93, n_samples = 354/862, baseline = 0.5551, acc = 0.7047
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 94, n_samples = 369/862, baseline = 0.5416, acc = 0.6897
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 95, n_samples = 341/862, baseline = 0.5528, acc = 0.6852
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 96, n_samples = 348/862, baseline = 0.5584, acc = 0.7276
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 97, n_samples = 334/862, baseline = 0.5568, acc = 0.6951
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 98, n_samples = 345/862, baseline = 0.5455, acc = 0.6615
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 99, n_samples = 345/862, baseline = 0.5377, acc = 0.7060
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=False iter = 0, n_samples = 262/862, baseline = 0.5317, acc = 0.6833
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 1, n_samples = 251/862, baseline = 0.5548, acc = 0.6743
-- [u'Max D', 'Volume', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 2, n_samples = 252/862, baseline = 0.5361, acc = 0.7016
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 3, n_samples = 248/862, baseline = 0.5358, acc = 0.6808
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 4, n_samples = 289/862, baseline = 0.5428, acc = 0.6649
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 5, n_samples = 276/862, baseline = 0.5614, acc = 0.6877
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 6, n_samples = 236/862, baseline = 0.5543, acc = 0.6917
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 7, n_samples = 227/862, baseline = 0.5606, acc = 0.6898
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 8, n_samples = 268/862, baseline = 0.5556, acc = 0.6582
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 9, n_samples = 261/862, baseline = 0.5591, acc = 0.6905
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 10, n_samples = 256/862, baseline = 0.5297, acc = 0.6700
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 11, n_samples = 264/862, baseline = 0.5619, acc = 0.6622
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 12, n_samples = 236/862, baseline = 0.5511, acc = 0.6917
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 13, n_samples = 271/862, baseline = 0.5313, acc = 0.6717
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 14, n_samples = 263/862, baseline = 0.5593, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 15, n_samples = 253/862, baseline = 0.5369, acc = 0.6634
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 16, n_samples = 286/862, baseline = 0.5451, acc = 0.6944
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 17, n_samples = 242/862, baseline = 0.5774, acc = 0.6613
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 18, n_samples = 249/862, baseline = 0.5840, acc = 0.6868
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 19, n_samples = 249/862, baseline = 0.5498, acc = 0.6933
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 20, n_samples = 266/862, baseline = 0.5252, acc = 0.6477
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 21, n_samples = 243/862, baseline = 0.5590, acc = 0.6979
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 22, n_samples = 252/862, baseline = 0.5541, acc = 0.6689
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 23, n_samples = 248/862, baseline = 0.5521, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 24, n_samples = 263/862, baseline = 0.5543, acc = 0.6878
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 25, n_samples = 259/862, baseline = 0.5556, acc = 0.6833
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 26, n_samples = 264/862, baseline = 0.5635, acc = 0.6856
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 27, n_samples = 249/862, baseline = 0.5710, acc = 0.7113
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 28, n_samples = 242/862, baseline = 0.5661, acc = 0.6790
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 29, n_samples = 249/862, baseline = 0.5644, acc = 0.6933
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 30, n_samples = 274/862, baseline = 0.5561, acc = 0.6565
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 31, n_samples = 269/862, baseline = 0.5582, acc = 0.6931
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 32, n_samples = 238/862, baseline = 0.5545, acc = 0.6651
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 33, n_samples = 248/862, baseline = 0.5391, acc = 0.7052
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 34, n_samples = 271/862, baseline = 0.5601, acc = 0.6650
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 35, n_samples = 234/862, baseline = 0.5717, acc = 0.7006
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 36, n_samples = 255/862, baseline = 0.5486, acc = 0.6969
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 37, n_samples = 258/862, baseline = 0.5546, acc = 0.7003
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 38, n_samples = 256/862, baseline = 0.5495, acc = 0.7063
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 39, n_samples = 280/862, baseline = 0.5464, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 40, n_samples = 267/862, baseline = 0.5529, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 41, n_samples = 236/862, baseline = 0.5623, acc = 0.6741
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 42, n_samples = 264/862, baseline = 0.5452, acc = 0.6773
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 43, n_samples = 252/862, baseline = 0.5541, acc = 0.6787
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 44, n_samples = 274/862, baseline = 0.5578, acc = 0.7092
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 45, n_samples = 261/862, baseline = 0.5474, acc = 0.6822
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 46, n_samples = 273/862, baseline = 0.5552, acc = 0.6723
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 47, n_samples = 268/862, baseline = 0.5522, acc = 0.6734
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 48, n_samples = 254/862, baseline = 0.5428, acc = 0.6826
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 49, n_samples = 263/862, baseline = 0.5559, acc = 0.6861
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 50, n_samples = 252/862, baseline = 0.5656, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 51, n_samples = 249/862, baseline = 0.5449, acc = 0.6721
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 52, n_samples = 270/862, baseline = 0.5507, acc = 0.6622
-- [u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 53, n_samples = 262/862, baseline = 0.5550, acc = 0.6667
-- [u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 54, n_samples = 258/862, baseline = 0.5563, acc = 0.6887
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 55, n_samples = 261/862, baseline = 0.5391, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 56, n_samples = 234/862, baseline = 0.5573, acc = 0.6879
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 57, n_samples = 270/862, baseline = 0.5591, acc = 0.6976
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 58, n_samples = 265/862, baseline = 0.5327, acc = 0.6600
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 59, n_samples = 244/862, baseline = 0.5728, acc = 0.6861
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 60, n_samples = 257/862, baseline = 0.5488, acc = 0.6926
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 61, n_samples = 268/862, baseline = 0.5623, acc = 0.6582
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 62, n_samples = 274/862, baseline = 0.5544, acc = 0.6956
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 63, n_samples = 256/862, baseline = 0.5462, acc = 0.6815
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 64, n_samples = 243/862, baseline = 0.5460, acc = 0.6898
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 65, n_samples = 237/862, baseline = 0.5552, acc = 0.6752
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 66, n_samples = 256/862, baseline = 0.5627, acc = 0.7129
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 67, n_samples = 252/862, baseline = 0.5344, acc = 0.6820
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 68, n_samples = 241/862, baseline = 0.5604, acc = 0.6908
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 69, n_samples = 248/862, baseline = 0.5603, acc = 0.6759
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 70, n_samples = 266/862, baseline = 0.5386, acc = 0.7013
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 71, n_samples = 270/862, baseline = 0.5473, acc = 0.6943
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 72, n_samples = 240/862, baseline = 0.5498, acc = 0.6785
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 73, n_samples = 251/862, baseline = 0.5516, acc = 0.6923
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 74, n_samples = 266/862, baseline = 0.5705, acc = 0.6695
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 75, n_samples = 253/862, baseline = 0.5517, acc = 0.6650
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 76, n_samples = 244/862, baseline = 0.5485, acc = 0.6796
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 77, n_samples = 252/862, baseline = 0.5443, acc = 0.6721
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 78, n_samples = 275/862, baseline = 0.5247, acc = 0.6627
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 79, n_samples = 249/862, baseline = 0.5514, acc = 0.6966
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 80, n_samples = 249/862, baseline = 0.5693, acc = 0.6688
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 81, n_samples = 290/862, baseline = 0.5577, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 82, n_samples = 255/862, baseline = 0.5305, acc = 0.6804
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 83, n_samples = 239/862, baseline = 0.5409, acc = 0.6709
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 84, n_samples = 254/862, baseline = 0.5609, acc = 0.6957
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 85, n_samples = 247/862, baseline = 0.5431, acc = 0.6797
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 86, n_samples = 252/862, baseline = 0.5508, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 87, n_samples = 259/862, baseline = 0.5506, acc = 0.6866
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 88, n_samples = 283/862, baseline = 0.5354, acc = 0.6805
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 89, n_samples = 249/862, baseline = 0.5302, acc = 0.6639
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 90, n_samples = 260/862, baseline = 0.5465, acc = 0.6761
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 91, n_samples = 264/862, baseline = 0.5401, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 92, n_samples = 246/862, baseline = 0.5390, acc = 0.6753
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 93, n_samples = 254/862, baseline = 0.5296, acc = 0.6579
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 94, n_samples = 269/862, baseline = 0.5464, acc = 0.6712
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 95, n_samples = 236/862, baseline = 0.5447, acc = 0.6709
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 96, n_samples = 284/862, baseline = 0.5606, acc = 0.6782
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 97, n_samples = 276/862, baseline = 0.5375, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 98, n_samples = 258/862, baseline = 0.5397, acc = 0.6871
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 99, n_samples = 273/862, baseline = 0.5823, acc = 0.6961
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 0, n_samples = 260/862, baseline = 0.5615, acc = 0.6860
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 1, n_samples = 250/862, baseline = 0.5458, acc = 0.6961
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 2, n_samples = 246/862, baseline = 0.5373, acc = 0.6964
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 3, n_samples = 244/862, baseline = 0.5485, acc = 0.6942
-- [u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 4, n_samples = 269/862, baseline = 0.5295, acc = 0.6594
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 5, n_samples = 241/862, baseline = 0.5443, acc = 0.6973
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 6, n_samples = 257/862, baseline = 0.5620, acc = 0.7025
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 7, n_samples = 266/862, baseline = 0.5403, acc = 0.6795
-- [u'Sex', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 8, n_samples = 266/862, baseline = 0.5587, acc = 0.6745
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 9, n_samples = 262/862, baseline = 0.5417, acc = 0.6783
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 10, n_samples = 248/862, baseline = 0.5586, acc = 0.6938
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 11, n_samples = 240/862, baseline = 0.5723, acc = 0.6897
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 12, n_samples = 263/862, baseline = 0.5543, acc = 0.7045
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 13, n_samples = 279/862, baseline = 0.5403, acc = 0.6930
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 14, n_samples = 259/862, baseline = 0.5638, acc = 0.7148
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 15, n_samples = 259/862, baseline = 0.5489, acc = 0.6849
-- ['Age', u'Max D', u'Embo', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 16, n_samples = 246/862, baseline = 0.5471, acc = 0.6867
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 17, n_samples = 253/862, baseline = 0.5616, acc = 0.6946
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 18, n_samples = 252/862, baseline = 0.5557, acc = 0.6754
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 19, n_samples = 275/862, baseline = 0.5468, acc = 0.6917
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 20, n_samples = 282/862, baseline = 0.5500, acc = 0.6948
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 21, n_samples = 262/862, baseline = 0.5550, acc = 0.7133
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 22, n_samples = 276/862, baseline = 0.5495, acc = 0.6997
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 23, n_samples = 255/862, baseline = 0.5486, acc = 0.7051
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 24, n_samples = 258/862, baseline = 0.5563, acc = 0.6821
-- ['Age', u'SM', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 25, n_samples = 255/862, baseline = 0.5470, acc = 0.6755
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 26, n_samples = 269/862, baseline = 0.5312, acc = 0.7066
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 27, n_samples = 259/862, baseline = 0.5522, acc = 0.6716
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 28, n_samples = 254/862, baseline = 0.5362, acc = 0.6842
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 29, n_samples = 272/862, baseline = 0.5475, acc = 0.6847
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 30, n_samples = 274/862, baseline = 0.5544, acc = 0.7007
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 31, n_samples = 269/862, baseline = 0.5396, acc = 0.6779
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 32, n_samples = 243/862, baseline = 0.5541, acc = 0.6882
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 33, n_samples = 259/862, baseline = 0.5572, acc = 0.6766
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 34, n_samples = 242/862, baseline = 0.5452, acc = 0.6806
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 35, n_samples = 261/862, baseline = 0.5474, acc = 0.7022
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 36, n_samples = 275/862, baseline = 0.5639, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 37, n_samples = 280/862, baseline = 0.5584, acc = 0.6838
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 38, n_samples = 263/862, baseline = 0.5159, acc = 0.6678
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 39, n_samples = 267/862, baseline = 0.5513, acc = 0.6924
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 40, n_samples = 262/862, baseline = 0.5350, acc = 0.6817
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 41, n_samples = 282/862, baseline = 0.5328, acc = 0.6862
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 42, n_samples = 242/862, baseline = 0.5403, acc = 0.6806
-- [u'SM', u'Max D', 'Volume', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 43, n_samples = 252/862, baseline = 0.5525, acc = 0.6934
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 44, n_samples = 239/862, baseline = 0.5634, acc = 0.7127
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 45, n_samples = 250/862, baseline = 0.5588, acc = 0.6781
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 46, n_samples = 253/862, baseline = 0.5468, acc = 0.7011
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 47, n_samples = 253/862, baseline = 0.5698, acc = 0.6897
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 48, n_samples = 273/862, baseline = 0.5399, acc = 0.6893
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 49, n_samples = 247/862, baseline = 0.5545, acc = 0.6943
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 50, n_samples = 270/862, baseline = 0.5524, acc = 0.6807
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 51, n_samples = 269/862, baseline = 0.5514, acc = 0.6678
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 52, n_samples = 262/862, baseline = 0.5233, acc = 0.6533
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 53, n_samples = 264/862, baseline = 0.5518, acc = 0.6856
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 54, n_samples = 238/862, baseline = 0.5625, acc = 0.7051
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 55, n_samples = 251/862, baseline = 0.5483, acc = 0.6890
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 56, n_samples = 267/862, baseline = 0.5731, acc = 0.6840
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 57, n_samples = 258/862, baseline = 0.5480, acc = 0.6755
-- ['Age', u'SM', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 58, n_samples = 262/862, baseline = 0.5400, acc = 0.6833
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 59, n_samples = 253/862, baseline = 0.5567, acc = 0.6847
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 60, n_samples = 260/862, baseline = 0.5432, acc = 0.6661
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 61, n_samples = 261/862, baseline = 0.5524, acc = 0.6855
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 62, n_samples = 263/862, baseline = 0.5509, acc = 0.7145
-- [u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 63, n_samples = 265/862, baseline = 0.5611, acc = 0.7085
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 64, n_samples = 269/862, baseline = 0.5379, acc = 0.6762
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 65, n_samples = 252/862, baseline = 0.5459, acc = 0.6984
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 66, n_samples = 255/862, baseline = 0.5470, acc = 0.6837
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 67, n_samples = 266/862, baseline = 0.5419, acc = 0.6913
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 68, n_samples = 262/862, baseline = 0.5683, acc = 0.7067
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 69, n_samples = 271/862, baseline = 0.5516, acc = 0.6904
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 70, n_samples = 272/862, baseline = 0.5475, acc = 0.6881
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 71, n_samples = 253/862, baseline = 0.5484, acc = 0.6962
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 72, n_samples = 248/862, baseline = 0.5489, acc = 0.6661
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 73, n_samples = 248/862, baseline = 0.5554, acc = 0.6906
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 74, n_samples = 247/862, baseline = 0.5724, acc = 0.6667
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 75, n_samples = 263/862, baseline = 0.5426, acc = 0.6828
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 76, n_samples = 255/862, baseline = 0.5552, acc = 0.6886
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 77, n_samples = 261/862, baseline = 0.5607, acc = 0.7188
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 78, n_samples = 268/862, baseline = 0.5556, acc = 0.6717
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 79, n_samples = 248/862, baseline = 0.5440, acc = 0.6792
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 80, n_samples = 236/862, baseline = 0.5447, acc = 0.6837
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 81, n_samples = 271/862, baseline = 0.5431, acc = 0.6836
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 82, n_samples = 268/862, baseline = 0.5539, acc = 0.6818
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 83, n_samples = 246/862, baseline = 0.5503, acc = 0.6753
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 84, n_samples = 262/862, baseline = 0.5367, acc = 0.6850
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 85, n_samples = 237/862, baseline = 0.5552, acc = 0.7024
-- [u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 86, n_samples = 262/862, baseline = 0.5767, acc = 0.6967
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 87, n_samples = 263/862, baseline = 0.5426, acc = 0.6962
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 88, n_samples = 261/862, baseline = 0.5458, acc = 0.6872
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 89, n_samples = 255/862, baseline = 0.5535, acc = 0.6853
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 90, n_samples = 255/862, baseline = 0.5618, acc = 0.6738
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 91, n_samples = 269/862, baseline = 0.5481, acc = 0.7167
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 92, n_samples = 279/862, baseline = 0.5386, acc = 0.7136
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 93, n_samples = 293/862, baseline = 0.5712, acc = 0.6942
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 94, n_samples = 264/862, baseline = 0.5318, acc = 0.6873
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 95, n_samples = 269/862, baseline = 0.5514, acc = 0.6847
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 96, n_samples = 261/862, baseline = 0.5275, acc = 0.6722
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 97, n_samples = 262/862, baseline = 0.5433, acc = 0.7000
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 98, n_samples = 264/862, baseline = 0.5585, acc = 0.6890
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 99, n_samples = 266/862, baseline = 0.5688, acc = 0.6711
-- ['Age', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 0, n_samples = 254/862, baseline = 0.5625, acc = 0.7072
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 1, n_samples = 270/862, baseline = 0.5625, acc = 0.6976
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 2, n_samples = 259/862, baseline = 0.5406, acc = 0.6949
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 3, n_samples = 261/862, baseline = 0.5474, acc = 0.6739
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 4, n_samples = 260/862, baseline = 0.5449, acc = 0.6827
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 5, n_samples = 262/862, baseline = 0.5583, acc = 0.6933
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 6, n_samples = 275/862, baseline = 0.5434, acc = 0.7121
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 7, n_samples = 269/862, baseline = 0.5531, acc = 0.6965
-- [u'Sex', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 8, n_samples = 253/862, baseline = 0.5764, acc = 0.6864
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 9, n_samples = 266/862, baseline = 0.5671, acc = 0.6913
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 10, n_samples = 258/862, baseline = 0.5712, acc = 0.7053
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 11, n_samples = 247/862, baseline = 0.5496, acc = 0.6976
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 12, n_samples = 284/862, baseline = 0.5571, acc = 0.7128
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 13, n_samples = 246/862, baseline = 0.5438, acc = 0.6640
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 14, n_samples = 254/862, baseline = 0.5543, acc = 0.6859
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 15, n_samples = 242/862, baseline = 0.5435, acc = 0.6855
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 16, n_samples = 254/862, baseline = 0.5444, acc = 0.6908
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 17, n_samples = 254/862, baseline = 0.5641, acc = 0.6908
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 18, n_samples = 246/862, baseline = 0.5568, acc = 0.7045
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 19, n_samples = 247/862, baseline = 0.5740, acc = 0.6618
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 20, n_samples = 264/862, baseline = 0.5468, acc = 0.7007
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 21, n_samples = 253/862, baseline = 0.5435, acc = 0.6831
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 22, n_samples = 267/862, baseline = 0.5765, acc = 0.7227
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 23, n_samples = 265/862, baseline = 0.5494, acc = 0.6750
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 24, n_samples = 263/862, baseline = 0.5743, acc = 0.7162
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 25, n_samples = 246/862, baseline = 0.5373, acc = 0.6851
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 26, n_samples = 259/862, baseline = 0.5340, acc = 0.6982
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 27, n_samples = 243/862, baseline = 0.5622, acc = 0.6947
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 28, n_samples = 271/862, baseline = 0.5668, acc = 0.6870
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 29, n_samples = 246/862, baseline = 0.5633, acc = 0.6688
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 30, n_samples = 275/862, baseline = 0.5571, acc = 0.7070
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 31, n_samples = 259/862, baseline = 0.5572, acc = 0.6468
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 32, n_samples = 269/862, baseline = 0.5430, acc = 0.6880
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 33, n_samples = 269/862, baseline = 0.5565, acc = 0.6965
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 34, n_samples = 253/862, baseline = 0.5501, acc = 0.6880
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 35, n_samples = 232/862, baseline = 0.5635, acc = 0.6857
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 36, n_samples = 259/862, baseline = 0.5539, acc = 0.6965
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 37, n_samples = 253/862, baseline = 0.5517, acc = 0.6732
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 38, n_samples = 256/862, baseline = 0.5429, acc = 0.6518
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 39, n_samples = 260/862, baseline = 0.5399, acc = 0.7060
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 40, n_samples = 261/862, baseline = 0.5657, acc = 0.6722
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 41, n_samples = 265/862, baseline = 0.5662, acc = 0.7136
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 42, n_samples = 269/862, baseline = 0.5413, acc = 0.6931
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 43, n_samples = 221/862, baseline = 0.5289, acc = 0.6646
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 44, n_samples = 243/862, baseline = 0.5590, acc = 0.7011
-- [u'Sex', 'Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 45, n_samples = 239/862, baseline = 0.5409, acc = 0.6854
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 46, n_samples = 262/862, baseline = 0.5450, acc = 0.6983
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 47, n_samples = 250/862, baseline = 0.5490, acc = 0.6928
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 48, n_samples = 250/862, baseline = 0.5637, acc = 0.7010
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 49, n_samples = 250/862, baseline = 0.5605, acc = 0.6846
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 50, n_samples = 250/862, baseline = 0.5588, acc = 0.7042
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 51, n_samples = 244/862, baseline = 0.5663, acc = 0.7087
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 52, n_samples = 253/862, baseline = 0.5419, acc = 0.6946
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 53, n_samples = 282/862, baseline = 0.5638, acc = 0.7000
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 54, n_samples = 267/862, baseline = 0.5395, acc = 0.6756
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 55, n_samples = 240/862, baseline = 0.5322, acc = 0.6833
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 56, n_samples = 243/862, baseline = 0.5751, acc = 0.7027
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 57, n_samples = 274/862, baseline = 0.5680, acc = 0.7126
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 58, n_samples = 268/862, baseline = 0.5421, acc = 0.7020
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 59, n_samples = 219/862, baseline = 0.5537, acc = 0.6905
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 60, n_samples = 275/862, baseline = 0.5503, acc = 0.7104
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 61, n_samples = 256/862, baseline = 0.5528, acc = 0.7030
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 62, n_samples = 253/862, baseline = 0.5747, acc = 0.6782
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 63, n_samples = 268/862, baseline = 0.5572, acc = 0.6987
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 64, n_samples = 257/862, baseline = 0.5554, acc = 0.7140
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 65, n_samples = 250/862, baseline = 0.5507, acc = 0.6748
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 66, n_samples = 271/862, baseline = 0.5584, acc = 0.7039
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 67, n_samples = 273/862, baseline = 0.5365, acc = 0.6910
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 68, n_samples = 273/862, baseline = 0.5603, acc = 0.6808
-- [u'Sex', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 69, n_samples = 262/862, baseline = 0.5633, acc = 0.6917
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 70, n_samples = 236/862, baseline = 0.5511, acc = 0.6869
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 71, n_samples = 250/862, baseline = 0.5539, acc = 0.6912
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 72, n_samples = 260/862, baseline = 0.5565, acc = 0.6844
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 73, n_samples = 243/862, baseline = 0.5493, acc = 0.6931
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 74, n_samples = 255/862, baseline = 0.5502, acc = 0.6919
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 75, n_samples = 263/862, baseline = 0.5492, acc = 0.6962
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 76, n_samples = 241/862, baseline = 0.5539, acc = 0.6812
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 77, n_samples = 260/862, baseline = 0.5432, acc = 0.6944
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 78, n_samples = 212/862, baseline = 0.5538, acc = 0.6785
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 79, n_samples = 256/862, baseline = 0.5578, acc = 0.6898
-- ['Age', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 80, n_samples = 260/862, baseline = 0.5449, acc = 0.6977
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 81, n_samples = 286/862, baseline = 0.5417, acc = 0.6788
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 82, n_samples = 249/862, baseline = 0.5498, acc = 0.6835
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 83, n_samples = 252/862, baseline = 0.5738, acc = 0.7066
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 84, n_samples = 264/862, baseline = 0.5452, acc = 0.7007
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 85, n_samples = 280/862, baseline = 0.5601, acc = 0.6718
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 86, n_samples = 257/862, baseline = 0.5421, acc = 0.6843
-- [u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 87, n_samples = 257/862, baseline = 0.5388, acc = 0.6793
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 88, n_samples = 252/862, baseline = 0.5607, acc = 0.7033
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 89, n_samples = 254/862, baseline = 0.5543, acc = 0.7039
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 90, n_samples = 269/862, baseline = 0.5683, acc = 0.7083
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 91, n_samples = 260/862, baseline = 0.5581, acc = 0.6728
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 92, n_samples = 240/862, baseline = 0.5514, acc = 0.6768
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 93, n_samples = 264/862, baseline = 0.5468, acc = 0.7040
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 94, n_samples = 254/862, baseline = 0.5493, acc = 0.6957
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 95, n_samples = 273/862, baseline = 0.5433, acc = 0.6791
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 96, n_samples = 256/862, baseline = 0.5446, acc = 0.6997
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 97, n_samples = 238/862, baseline = 0.5497, acc = 0.7083
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 98, n_samples = 264/862, baseline = 0.5552, acc = 0.6806
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 99, n_samples = 280/862, baseline = 0.5430, acc = 0.7010
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 0, n_samples = 277/862, baseline = 0.5470, acc = 0.6889
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 1, n_samples = 278/862, baseline = 0.5599, acc = 0.6610
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 2, n_samples = 266/862, baseline = 0.5537, acc = 0.6829
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 3, n_samples = 277/862, baseline = 0.5538, acc = 0.6923
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 4, n_samples = 255/862, baseline = 0.5568, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 5, n_samples = 251/862, baseline = 0.5565, acc = 0.6776
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 6, n_samples = 245/862, baseline = 0.5446, acc = 0.6888
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 7, n_samples = 260/862, baseline = 0.5532, acc = 0.6877
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 8, n_samples = 259/862, baseline = 0.5589, acc = 0.7032
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 9, n_samples = 262/862, baseline = 0.5667, acc = 0.6883
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 10, n_samples = 270/862, baseline = 0.5287, acc = 0.6689
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 11, n_samples = 257/862, baseline = 0.5521, acc = 0.6793
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 12, n_samples = 263/862, baseline = 0.5476, acc = 0.6628
-- ['Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 13, n_samples = 260/862, baseline = 0.5880, acc = 0.6827
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 14, n_samples = 254/862, baseline = 0.5230, acc = 0.6859
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 15, n_samples = 255/862, baseline = 0.5667, acc = 0.6886
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 16, n_samples = 282/862, baseline = 0.5552, acc = 0.6759
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 17, n_samples = 247/862, baseline = 0.5593, acc = 0.7008
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 18, n_samples = 251/862, baseline = 0.5401, acc = 0.6743
-- [u'SM', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 19, n_samples = 258/862, baseline = 0.5546, acc = 0.7020
-- [u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 20, n_samples = 257/862, baseline = 0.5388, acc = 0.6760
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 21, n_samples = 258/862, baseline = 0.5281, acc = 0.6556
-- ['Age', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 22, n_samples = 245/862, baseline = 0.5462, acc = 0.6629
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 23, n_samples = 263/862, baseline = 0.5593, acc = 0.6978
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 24, n_samples = 258/862, baseline = 0.5464, acc = 0.6854
-- [u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 25, n_samples = 245/862, baseline = 0.5559, acc = 0.6840
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 26, n_samples = 242/862, baseline = 0.5500, acc = 0.7048
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 27, n_samples = 256/862, baseline = 0.5644, acc = 0.6848
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 28, n_samples = 250/862, baseline = 0.5588, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 29, n_samples = 273/862, baseline = 0.5586, acc = 0.6910
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 30, n_samples = 268/862, baseline = 0.5505, acc = 0.6835
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 31, n_samples = 236/862, baseline = 0.5511, acc = 0.6709
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 32, n_samples = 250/862, baseline = 0.5294, acc = 0.6797
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 33, n_samples = 257/862, baseline = 0.5669, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 34, n_samples = 247/862, baseline = 0.5528, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 35, n_samples = 245/862, baseline = 0.5575, acc = 0.7034
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 36, n_samples = 256/862, baseline = 0.5677, acc = 0.7079
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 37, n_samples = 279/862, baseline = 0.5472, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 38, n_samples = 240/862, baseline = 0.5386, acc = 0.6720
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 39, n_samples = 259/862, baseline = 0.5705, acc = 0.6998
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 40, n_samples = 249/862, baseline = 0.5693, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 41, n_samples = 260/862, baseline = 0.5748, acc = 0.6910
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 42, n_samples = 245/862, baseline = 0.5511, acc = 0.6969
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 43, n_samples = 249/862, baseline = 0.5677, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 44, n_samples = 269/862, baseline = 0.5413, acc = 0.6863
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 45, n_samples = 229/862, baseline = 0.5482, acc = 0.6761
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 46, n_samples = 233/862, baseline = 0.5564, acc = 0.6725
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 47, n_samples = 280/862, baseline = 0.5515, acc = 0.6718
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 48, n_samples = 280/862, baseline = 0.5687, acc = 0.6821
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 49, n_samples = 252/862, baseline = 0.5590, acc = 0.6508
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 50, n_samples = 239/862, baseline = 0.5522, acc = 0.6581
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 51, n_samples = 253/862, baseline = 0.5567, acc = 0.6929
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 52, n_samples = 285/862, baseline = 0.5494, acc = 0.6898
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 53, n_samples = 263/862, baseline = 0.5543, acc = 0.6945
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 54, n_samples = 281/862, baseline = 0.5508, acc = 0.6919
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 55, n_samples = 271/862, baseline = 0.5465, acc = 0.7056
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 56, n_samples = 267/862, baseline = 0.5664, acc = 0.6958
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 57, n_samples = 251/862, baseline = 0.5434, acc = 0.6678
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 58, n_samples = 267/862, baseline = 0.5697, acc = 0.7076
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 59, n_samples = 231/862, baseline = 0.5499, acc = 0.6593
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 60, n_samples = 262/862, baseline = 0.5550, acc = 0.7000
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 61, n_samples = 303/862, baseline = 0.5438, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 62, n_samples = 263/862, baseline = 0.5459, acc = 0.6628
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 63, n_samples = 259/862, baseline = 0.5572, acc = 0.6866
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 64, n_samples = 253/862, baseline = 0.5534, acc = 0.6798
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 65, n_samples = 264/862, baseline = 0.5351, acc = 0.6839
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 66, n_samples = 274/862, baseline = 0.5408, acc = 0.6701
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 67, n_samples = 253/862, baseline = 0.5550, acc = 0.6864
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 68, n_samples = 246/862, baseline = 0.5536, acc = 0.6607
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 69, n_samples = 264/862, baseline = 0.5334, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 70, n_samples = 247/862, baseline = 0.5675, acc = 0.6423
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 71, n_samples = 252/862, baseline = 0.5672, acc = 0.6869
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 72, n_samples = 244/862, baseline = 0.5550, acc = 0.6893
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 73, n_samples = 269/862, baseline = 0.5464, acc = 0.6762
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 74, n_samples = 256/862, baseline = 0.5462, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 75, n_samples = 254/862, baseline = 0.5444, acc = 0.7007
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 76, n_samples = 231/862, baseline = 0.5610, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 77, n_samples = 263/862, baseline = 0.5543, acc = 0.6895
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 78, n_samples = 234/862, baseline = 0.5462, acc = 0.6815
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 79, n_samples = 238/862, baseline = 0.5465, acc = 0.6795
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 80, n_samples = 244/862, baseline = 0.5502, acc = 0.6909
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 81, n_samples = 253/862, baseline = 0.5567, acc = 0.7077
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 82, n_samples = 271/862, baseline = 0.5482, acc = 0.6937
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 83, n_samples = 261/862, baseline = 0.5607, acc = 0.6972
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 84, n_samples = 238/862, baseline = 0.5465, acc = 0.6939
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 85, n_samples = 276/862, baseline = 0.5512, acc = 0.6945
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 86, n_samples = 260/862, baseline = 0.5565, acc = 0.7027
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 87, n_samples = 254/862, baseline = 0.5461, acc = 0.6809
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 88, n_samples = 234/862, baseline = 0.5398, acc = 0.6640
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 89, n_samples = 247/862, baseline = 0.5545, acc = 0.6927
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 90, n_samples = 253/862, baseline = 0.5468, acc = 0.6716
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 91, n_samples = 234/862, baseline = 0.5494, acc = 0.6847
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 92, n_samples = 270/862, baseline = 0.5456, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 93, n_samples = 267/862, baseline = 0.5546, acc = 0.6874
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 94, n_samples = 249/862, baseline = 0.5612, acc = 0.6998
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 95, n_samples = 254/862, baseline = 0.5362, acc = 0.6743
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 96, n_samples = 252/862, baseline = 0.5311, acc = 0.6656
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 97, n_samples = 262/862, baseline = 0.5283, acc = 0.6700
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 98, n_samples = 273/862, baseline = 0.5789, acc = 0.6876
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 99, n_samples = 257/862, baseline = 0.5554, acc = 0.6793
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 0, n_samples = 292/862, baseline = 0.5684, acc = 0.7105
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 1, n_samples = 255/862, baseline = 0.5519, acc = 0.6853
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 2, n_samples = 273/862, baseline = 0.5569, acc = 0.6893
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 3, n_samples = 249/862, baseline = 0.5563, acc = 0.6884
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 4, n_samples = 251/862, baseline = 0.5532, acc = 0.7005
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 5, n_samples = 272/862, baseline = 0.5542, acc = 0.7102
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 6, n_samples = 280/862, baseline = 0.5430, acc = 0.6753
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 7, n_samples = 264/862, baseline = 0.5485, acc = 0.6839
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 8, n_samples = 267/862, baseline = 0.5529, acc = 0.7025
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 9, n_samples = 245/862, baseline = 0.5737, acc = 0.7050
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 10, n_samples = 242/862, baseline = 0.5387, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 11, n_samples = 261/862, baseline = 0.5591, acc = 0.6988
-- ['Age', u'Max D', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 12, n_samples = 257/862, baseline = 0.5471, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 13, n_samples = 252/862, baseline = 0.5574, acc = 0.6984
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 14, n_samples = 269/862, baseline = 0.5666, acc = 0.7066
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 15, n_samples = 249/862, baseline = 0.5302, acc = 0.6803
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 16, n_samples = 240/862, baseline = 0.5514, acc = 0.7026
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 17, n_samples = 253/862, baseline = 0.5517, acc = 0.6946
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 18, n_samples = 244/862, baseline = 0.5615, acc = 0.6942
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 19, n_samples = 269/862, baseline = 0.5464, acc = 0.6847
-- [u'Sex', 'Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 20, n_samples = 239/862, baseline = 0.5490, acc = 0.6870
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 21, n_samples = 272/862, baseline = 0.5424, acc = 0.6780
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 22, n_samples = 248/862, baseline = 0.5651, acc = 0.6987
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 23, n_samples = 279/862, baseline = 0.5369, acc = 0.6741
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 24, n_samples = 277/862, baseline = 0.5265, acc = 0.6650
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 25, n_samples = 283/862, baseline = 0.5630, acc = 0.6908
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 26, n_samples = 237/862, baseline = 0.5568, acc = 0.6784
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 27, n_samples = 234/862, baseline = 0.5525, acc = 0.6895
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 28, n_samples = 227/862, baseline = 0.5654, acc = 0.6866
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 29, n_samples = 290/862, baseline = 0.5402, acc = 0.7098
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 30, n_samples = 262/862, baseline = 0.5500, acc = 0.6933
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 31, n_samples = 249/862, baseline = 0.5498, acc = 0.6688
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 32, n_samples = 241/862, baseline = 0.5556, acc = 0.6779
-- [u'Sex', 'Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 33, n_samples = 255/862, baseline = 0.5437, acc = 0.7018
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 34, n_samples = 248/862, baseline = 0.5407, acc = 0.6808
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 35, n_samples = 250/862, baseline = 0.5637, acc = 0.6895
-- [u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 36, n_samples = 265/862, baseline = 0.5494, acc = 0.6750
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 37, n_samples = 273/862, baseline = 0.5297, acc = 0.6791
-- [u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 38, n_samples = 242/862, baseline = 0.5468, acc = 0.6984
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 39, n_samples = 246/862, baseline = 0.5422, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 40, n_samples = 258/862, baseline = 0.5629, acc = 0.6821
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 41, n_samples = 256/862, baseline = 0.5479, acc = 0.6733
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 42, n_samples = 266/862, baseline = 0.5688, acc = 0.6846
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 43, n_samples = 258/862, baseline = 0.5315, acc = 0.6838
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 44, n_samples = 245/862, baseline = 0.5478, acc = 0.6921
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 45, n_samples = 236/862, baseline = 0.5607, acc = 0.6965
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 46, n_samples = 250/862, baseline = 0.5490, acc = 0.6895
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 47, n_samples = 233/862, baseline = 0.5469, acc = 0.6836
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 48, n_samples = 260/862, baseline = 0.5781, acc = 0.6694
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 49, n_samples = 271/862, baseline = 0.5550, acc = 0.6768
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 50, n_samples = 251/862, baseline = 0.5352, acc = 0.6939
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 51, n_samples = 260/862, baseline = 0.5482, acc = 0.6910
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 52, n_samples = 265/862, baseline = 0.5578, acc = 0.6935
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 53, n_samples = 248/862, baseline = 0.5391, acc = 0.6857
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 54, n_samples = 276/862, baseline = 0.5563, acc = 0.6928
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 55, n_samples = 267/862, baseline = 0.5412, acc = 0.6723
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 56, n_samples = 250/862, baseline = 0.5408, acc = 0.6585
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 57, n_samples = 246/862, baseline = 0.5357, acc = 0.6802
-- ['Age', u'SM', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 58, n_samples = 257/862, baseline = 0.5504, acc = 0.7058
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 59, n_samples = 251/862, baseline = 0.5499, acc = 0.6907
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 60, n_samples = 253/862, baseline = 0.5632, acc = 0.6897
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 61, n_samples = 262/862, baseline = 0.5500, acc = 0.6833
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 62, n_samples = 264/862, baseline = 0.5552, acc = 0.6722
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 63, n_samples = 275/862, baseline = 0.5554, acc = 0.6951
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 64, n_samples = 265/862, baseline = 0.5578, acc = 0.7035
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 65, n_samples = 286/862, baseline = 0.5538, acc = 0.6667
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 66, n_samples = 278/862, baseline = 0.5565, acc = 0.6952
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 67, n_samples = 289/862, baseline = 0.5497, acc = 0.7068
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 68, n_samples = 239/862, baseline = 0.5506, acc = 0.7159
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 69, n_samples = 245/862, baseline = 0.5592, acc = 0.6499
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 70, n_samples = 277/862, baseline = 0.5487, acc = 0.6718
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 71, n_samples = 259/862, baseline = 0.5738, acc = 0.7098
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 72, n_samples = 276/862, baseline = 0.5461, acc = 0.6741
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 73, n_samples = 267/862, baseline = 0.5244, acc = 0.6723
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 74, n_samples = 244/862, baseline = 0.5485, acc = 0.6958
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 75, n_samples = 264/862, baseline = 0.5619, acc = 0.6806
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 76, n_samples = 257/862, baseline = 0.5620, acc = 0.6975
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 77, n_samples = 296/862, baseline = 0.5654, acc = 0.7014
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 78, n_samples = 244/862, baseline = 0.5502, acc = 0.6796
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 79, n_samples = 235/862, baseline = 0.5678, acc = 0.7289
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 80, n_samples = 241/862, baseline = 0.5443, acc = 0.6860
-- ['Age', u'Max D', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 81, n_samples = 239/862, baseline = 0.5602, acc = 0.6677
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 82, n_samples = 255/862, baseline = 0.5453, acc = 0.6919
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 83, n_samples = 267/862, baseline = 0.5529, acc = 0.6773
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 84, n_samples = 264/862, baseline = 0.5585, acc = 0.7191
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 85, n_samples = 244/862, baseline = 0.5421, acc = 0.6942
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 86, n_samples = 253/862, baseline = 0.5452, acc = 0.6683
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 87, n_samples = 263/862, baseline = 0.5626, acc = 0.6912
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 88, n_samples = 257/862, baseline = 0.5636, acc = 0.7025
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 89, n_samples = 265/862, baseline = 0.5427, acc = 0.6884
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 90, n_samples = 250/862, baseline = 0.5507, acc = 0.7157
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 91, n_samples = 262/862, baseline = 0.5567, acc = 0.6700
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 92, n_samples = 283/862, baseline = 0.5596, acc = 0.6753
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 93, n_samples = 249/862, baseline = 0.5334, acc = 0.6819
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 94, n_samples = 263/862, baseline = 0.5693, acc = 0.6962
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 95, n_samples = 269/862, baseline = 0.5278, acc = 0.6965
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 96, n_samples = 251/862, baseline = 0.5565, acc = 0.6972
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 97, n_samples = 254/862, baseline = 0.5362, acc = 0.6875
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 98, n_samples = 246/862, baseline = 0.5341, acc = 0.6802
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 99, n_samples = 250/862, baseline = 0.5507, acc = 0.6765
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 0, n_samples = 244/862, baseline = 0.5502, acc = 0.6845
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 1, n_samples = 277/862, baseline = 0.5368, acc = 0.7026
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 2, n_samples = 264/862, baseline = 0.5552, acc = 0.7074
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 3, n_samples = 250/862, baseline = 0.5441, acc = 0.7010
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 4, n_samples = 231/862, baseline = 0.5452, acc = 0.6910
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 5, n_samples = 248/862, baseline = 0.5521, acc = 0.6840
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 6, n_samples = 243/862, baseline = 0.5412, acc = 0.6947
-- [u'Sex', 'Age', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 7, n_samples = 266/862, baseline = 0.5419, acc = 0.6678
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 8, n_samples = 278/862, baseline = 0.5599, acc = 0.6918
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 9, n_samples = 276/862, baseline = 0.5563, acc = 0.6792
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 10, n_samples = 265/862, baseline = 0.5511, acc = 0.7018
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 11, n_samples = 285/862, baseline = 0.5546, acc = 0.6932
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 12, n_samples = 262/862, baseline = 0.5517, acc = 0.7117
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 13, n_samples = 260/862, baseline = 0.5365, acc = 0.6827
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 14, n_samples = 231/862, baseline = 0.5468, acc = 0.6957
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 15, n_samples = 234/862, baseline = 0.5494, acc = 0.6831
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 16, n_samples = 252/862, baseline = 0.5492, acc = 0.6836
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 17, n_samples = 249/862, baseline = 0.5383, acc = 0.6819
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 18, n_samples = 258/862, baseline = 0.5480, acc = 0.6788
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 19, n_samples = 254/862, baseline = 0.5559, acc = 0.6974
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 20, n_samples = 285/862, baseline = 0.5633, acc = 0.6915
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 21, n_samples = 243/862, baseline = 0.5493, acc = 0.6769
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 22, n_samples = 285/862, baseline = 0.5581, acc = 0.6828
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 23, n_samples = 277/862, baseline = 0.5556, acc = 0.6957
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 24, n_samples = 258/862, baseline = 0.5662, acc = 0.6738
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 25, n_samples = 261/862, baseline = 0.5341, acc = 0.6905
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 26, n_samples = 258/862, baseline = 0.5613, acc = 0.6887
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 27, n_samples = 255/862, baseline = 0.5601, acc = 0.6771
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 28, n_samples = 246/862, baseline = 0.5390, acc = 0.7029
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 29, n_samples = 253/862, baseline = 0.5517, acc = 0.6946
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 30, n_samples = 256/862, baseline = 0.5594, acc = 0.7162
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 31, n_samples = 243/862, baseline = 0.5347, acc = 0.6995
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 32, n_samples = 263/862, baseline = 0.5609, acc = 0.7145
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 33, n_samples = 260/862, baseline = 0.5233, acc = 0.6595
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 34, n_samples = 249/862, baseline = 0.5644, acc = 0.6803
-- ['Age', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 35, n_samples = 234/862, baseline = 0.5541, acc = 0.7054
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 36, n_samples = 295/862, baseline = 0.5467, acc = 0.6931
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 37, n_samples = 280/862, baseline = 0.5533, acc = 0.6890
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 38, n_samples = 273/862, baseline = 0.5603, acc = 0.6910
-- ['Age', u'SM', u'Max D', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 39, n_samples = 260/862, baseline = 0.5415, acc = 0.6794
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 40, n_samples = 278/862, baseline = 0.5462, acc = 0.6952
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 41, n_samples = 244/862, baseline = 0.5421, acc = 0.7087
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 42, n_samples = 252/862, baseline = 0.5410, acc = 0.6918
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 43, n_samples = 285/862, baseline = 0.5269, acc = 0.6603
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 44, n_samples = 263/862, baseline = 0.5609, acc = 0.6745
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 45, n_samples = 246/862, baseline = 0.5487, acc = 0.7127
-- [u'Sex', 'Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 46, n_samples = 248/862, baseline = 0.5521, acc = 0.6922
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 47, n_samples = 269/862, baseline = 0.5430, acc = 0.6830
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 48, n_samples = 278/862, baseline = 0.5531, acc = 0.6935
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 49, n_samples = 259/862, baseline = 0.5605, acc = 0.7065
-- [u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 50, n_samples = 278/862, baseline = 0.5531, acc = 0.6918
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 51, n_samples = 263/862, baseline = 0.5409, acc = 0.6761
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 52, n_samples = 261/862, baseline = 0.5740, acc = 0.7088
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 53, n_samples = 233/862, baseline = 0.5692, acc = 0.6963
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 54, n_samples = 247/862, baseline = 0.5512, acc = 0.6894
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 55, n_samples = 238/862, baseline = 0.5433, acc = 0.6907
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 56, n_samples = 266/862, baseline = 0.5587, acc = 0.6728
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 57, n_samples = 279/862, baseline = 0.5626, acc = 0.7136
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 58, n_samples = 249/862, baseline = 0.5498, acc = 0.6949
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 59, n_samples = 240/862, baseline = 0.5450, acc = 0.6768
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 60, n_samples = 251/862, baseline = 0.5532, acc = 0.7054
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 61, n_samples = 256/862, baseline = 0.5347, acc = 0.6848
-- [u'Sex', 'Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 62, n_samples = 285/862, baseline = 0.5234, acc = 0.6932
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 63, n_samples = 261/862, baseline = 0.5491, acc = 0.6938
-- [u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 64, n_samples = 238/862, baseline = 0.5465, acc = 0.6875
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 65, n_samples = 254/862, baseline = 0.5691, acc = 0.7286
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 66, n_samples = 260/862, baseline = 0.5482, acc = 0.6877
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 67, n_samples = 252/862, baseline = 0.5443, acc = 0.7131
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 68, n_samples = 273/862, baseline = 0.5569, acc = 0.6978
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 69, n_samples = 245/862, baseline = 0.5656, acc = 0.6904
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 70, n_samples = 265/862, baseline = 0.5511, acc = 0.6834
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 71, n_samples = 263/862, baseline = 0.5442, acc = 0.6628
-- [u'Sex', 'Age', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 72, n_samples = 230/862, baseline = 0.5601, acc = 0.6978
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 73, n_samples = 280/862, baseline = 0.5601, acc = 0.7045
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 74, n_samples = 264/862, baseline = 0.5502, acc = 0.7057
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 75, n_samples = 256/862, baseline = 0.5561, acc = 0.7063
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 76, n_samples = 257/862, baseline = 0.5405, acc = 0.6744
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 77, n_samples = 266/862, baseline = 0.5436, acc = 0.6661
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 78, n_samples = 256/862, baseline = 0.5479, acc = 0.6914
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 79, n_samples = 242/862, baseline = 0.5484, acc = 0.7016
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 80, n_samples = 270/862, baseline = 0.5405, acc = 0.6774
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 81, n_samples = 276/862, baseline = 0.5375, acc = 0.6860
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 82, n_samples = 267/862, baseline = 0.5496, acc = 0.6807
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 83, n_samples = 254/862, baseline = 0.5477, acc = 0.6941
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 84, n_samples = 262/862, baseline = 0.5367, acc = 0.7017
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 85, n_samples = 284/862, baseline = 0.5675, acc = 0.6955
-- [u'Sex', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 86, n_samples = 261/862, baseline = 0.5524, acc = 0.6988
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 87, n_samples = 283/862, baseline = 0.5475, acc = 0.6960
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 88, n_samples = 251/862, baseline = 0.5499, acc = 0.6809
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 89, n_samples = 232/862, baseline = 0.5413, acc = 0.6762
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 90, n_samples = 255/862, baseline = 0.5437, acc = 0.7018
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 91, n_samples = 260/862, baseline = 0.5698, acc = 0.6794
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 92, n_samples = 285/862, baseline = 0.5459, acc = 0.7019
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 93, n_samples = 261/862, baseline = 0.5458, acc = 0.6905
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 94, n_samples = 251/862, baseline = 0.5237, acc = 0.6661
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 95, n_samples = 266/862, baseline = 0.5453, acc = 0.7097
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 96, n_samples = 268/862, baseline = 0.5606, acc = 0.6852
-- [u'Sex', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 97, n_samples = 247/862, baseline = 0.5512, acc = 0.7024
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 98, n_samples = 270/862, baseline = 0.5490, acc = 0.6706
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 99, n_samples = 252/862, baseline = 0.5459, acc = 0.6770
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 0, n_samples = 169/862, baseline = 0.5426, acc = 0.6999
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 1, n_samples = 166/862, baseline = 0.5560, acc = 0.6652
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 2, n_samples = 165/862, baseline = 0.5524, acc = 0.6901
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 3, n_samples = 153/862, baseline = 0.5529, acc = 0.6615
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 4, n_samples = 177/862, baseline = 0.5489, acc = 0.6788
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 5, n_samples = 188/862, baseline = 0.5371, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 6, n_samples = 184/862, baseline = 0.5457, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 7, n_samples = 163/862, baseline = 0.5622, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 8, n_samples = 158/862, baseline = 0.5554, acc = 0.6918
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 9, n_samples = 188/862, baseline = 0.5475, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 10, n_samples = 183/862, baseline = 0.5552, acc = 0.6642
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 11, n_samples = 176/862, baseline = 0.5350, acc = 0.6618
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 12, n_samples = 180/862, baseline = 0.5601, acc = 0.6994
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 13, n_samples = 168/862, baseline = 0.5519, acc = 0.6729
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 14, n_samples = 162/862, baseline = 0.5657, acc = 0.6700
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 15, n_samples = 167/862, baseline = 0.5525, acc = 0.6863
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 16, n_samples = 194/862, baseline = 0.5494, acc = 0.6856
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 17, n_samples = 180/862, baseline = 0.5425, acc = 0.6701
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 18, n_samples = 165/862, baseline = 0.5352, acc = 0.6600
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 19, n_samples = 207/862, baseline = 0.5511, acc = 0.6595
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 20, n_samples = 178/862, baseline = 0.5512, acc = 0.6901
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 21, n_samples = 175/862, baseline = 0.5619, acc = 0.6769
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 22, n_samples = 162/862, baseline = 0.5643, acc = 0.6686
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 23, n_samples = 176/862, baseline = 0.5394, acc = 0.6531
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 24, n_samples = 174/862, baseline = 0.5494, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 25, n_samples = 162/862, baseline = 0.5500, acc = 0.6471
-- [u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 26, n_samples = 175/862, baseline = 0.5648, acc = 0.6725
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 27, n_samples = 182/862, baseline = 0.5603, acc = 0.6750
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 28, n_samples = 163/862, baseline = 0.5508, acc = 0.6795
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 29, n_samples = 173/862, baseline = 0.5414, acc = 0.6792
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 30, n_samples = 160/862, baseline = 0.5413, acc = 0.6738
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 31, n_samples = 173/862, baseline = 0.5530, acc = 0.6967
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 32, n_samples = 137/862, baseline = 0.5517, acc = 0.6786
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 33, n_samples = 177/862, baseline = 0.5474, acc = 0.6759
-- [u'Max D', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 34, n_samples = 166/862, baseline = 0.5489, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 35, n_samples = 178/862, baseline = 0.5497, acc = 0.6959
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 36, n_samples = 199/862, baseline = 0.5641, acc = 0.6908
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 37, n_samples = 159/862, baseline = 0.5562, acc = 0.6885
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 38, n_samples = 163/862, baseline = 0.5408, acc = 0.6838
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 39, n_samples = 191/862, baseline = 0.5469, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 40, n_samples = 212/862, baseline = 0.5646, acc = 0.6754
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 41, n_samples = 181/862, baseline = 0.5463, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 42, n_samples = 185/862, baseline = 0.5495, acc = 0.6883
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 43, n_samples = 177/862, baseline = 0.5416, acc = 0.6599
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 44, n_samples = 173/862, baseline = 0.5486, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 45, n_samples = 200/862, baseline = 0.5468, acc = 0.6949
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 46, n_samples = 159/862, baseline = 0.5519, acc = 0.6757
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 47, n_samples = 182/862, baseline = 0.5382, acc = 0.6809
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 48, n_samples = 172/862, baseline = 0.5522, acc = 0.6826
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 49, n_samples = 159/862, baseline = 0.5576, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 50, n_samples = 166/862, baseline = 0.5474, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 51, n_samples = 170/862, baseline = 0.5462, acc = 0.6749
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 52, n_samples = 182/862, baseline = 0.5485, acc = 0.6971
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 53, n_samples = 157/862, baseline = 0.5617, acc = 0.6440
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 54, n_samples = 194/862, baseline = 0.5434, acc = 0.6751
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 55, n_samples = 181/862, baseline = 0.5448, acc = 0.6828
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 56, n_samples = 187/862, baseline = 0.5600, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 57, n_samples = 171/862, baseline = 0.5615, acc = 0.6758
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 58, n_samples = 181/862, baseline = 0.5463, acc = 0.6843
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 59, n_samples = 179/862, baseline = 0.5578, acc = 0.6779
-- [u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 60, n_samples = 176/862, baseline = 0.5335, acc = 0.6531
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 61, n_samples = 143/862, baseline = 0.5605, acc = 0.6565
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 62, n_samples = 176/862, baseline = 0.5408, acc = 0.6706
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 63, n_samples = 161/862, baseline = 0.5563, acc = 0.6947
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 64, n_samples = 171/862, baseline = 0.5543, acc = 0.6585
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 65, n_samples = 160/862, baseline = 0.5456, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 66, n_samples = 174/862, baseline = 0.5465, acc = 0.6512
-- ['Age', u'Max D', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 67, n_samples = 176/862, baseline = 0.5612, acc = 0.6749
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 68, n_samples = 164/862, baseline = 0.5559, acc = 0.6777
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 69, n_samples = 183/862, baseline = 0.5479, acc = 0.6730
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 70, n_samples = 153/862, baseline = 0.5656, acc = 0.6770
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 71, n_samples = 178/862, baseline = 0.5526, acc = 0.6944
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 72, n_samples = 184/862, baseline = 0.5516, acc = 0.6652
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 73, n_samples = 170/862, baseline = 0.5535, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 74, n_samples = 164/862, baseline = 0.5774, acc = 0.6547
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 75, n_samples = 154/862, baseline = 0.5636, acc = 0.6723
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 76, n_samples = 167/862, baseline = 0.5367, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 77, n_samples = 177/862, baseline = 0.5723, acc = 0.6803
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 78, n_samples = 179/862, baseline = 0.5388, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 79, n_samples = 170/862, baseline = 0.5549, acc = 0.6734
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 80, n_samples = 184/862, baseline = 0.5457, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 81, n_samples = 164/862, baseline = 0.5501, acc = 0.6905
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 82, n_samples = 177/862, baseline = 0.5460, acc = 0.6891
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 83, n_samples = 168/862, baseline = 0.5519, acc = 0.6556
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 84, n_samples = 209/862, baseline = 0.5513, acc = 0.6723
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 85, n_samples = 183/862, baseline = 0.5420, acc = 0.6922
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 86, n_samples = 195/862, baseline = 0.5472, acc = 0.6807
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 87, n_samples = 161/862, baseline = 0.5506, acc = 0.6904
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 88, n_samples = 180/862, baseline = 0.5601, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 89, n_samples = 155/862, baseline = 0.5530, acc = 0.6775
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 90, n_samples = 160/862, baseline = 0.5684, acc = 0.6695
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=False iter = 91, n_samples = 176/862, baseline = 0.5525, acc = 0.6822
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 92, n_samples = 175/862, baseline = 0.5415, acc = 0.6812
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 93, n_samples = 158/862, baseline = 0.5568, acc = 0.6974
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 94, n_samples = 172/862, baseline = 0.5565, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 95, n_samples = 180/862, baseline = 0.5396, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 96, n_samples = 159/862, baseline = 0.5519, acc = 0.6856
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 97, n_samples = 155/862, baseline = 0.5446, acc = 0.6478
-- ['Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=False iter = 98, n_samples = 179/862, baseline = 0.5622, acc = 0.6808
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=False iter = 99, n_samples = 145/862, baseline = 0.5523, acc = 0.6681
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 0, n_samples = 161/862, baseline = 0.5421, acc = 0.6705
-- [u'Sex', 'Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 1, n_samples = 181/862, baseline = 0.5565, acc = 0.6784
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 2, n_samples = 175/862, baseline = 0.5488, acc = 0.7031
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 3, n_samples = 182/862, baseline = 0.5485, acc = 0.6956
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 4, n_samples = 179/862, baseline = 0.5520, acc = 0.7057
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 5, n_samples = 151/862, baseline = 0.5457, acc = 0.6793
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 6, n_samples = 178/862, baseline = 0.5658, acc = 0.6988
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 7, n_samples = 179/862, baseline = 0.5461, acc = 0.6911
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 8, n_samples = 167/862, baseline = 0.5525, acc = 0.7022
-- [u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 9, n_samples = 175/862, baseline = 0.5269, acc = 0.6739
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 10, n_samples = 154/862, baseline = 0.5565, acc = 0.6921
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 11, n_samples = 151/862, baseline = 0.5570, acc = 0.6850
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 12, n_samples = 158/862, baseline = 0.5540, acc = 0.6861
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 13, n_samples = 170/862, baseline = 0.5549, acc = 0.6517
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 14, n_samples = 171/862, baseline = 0.5630, acc = 0.6990
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 15, n_samples = 159/862, baseline = 0.5420, acc = 0.6913
-- [u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 16, n_samples = 182/862, baseline = 0.5618, acc = 0.6882
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 17, n_samples = 185/862, baseline = 0.5702, acc = 0.6942
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 18, n_samples = 165/862, baseline = 0.5610, acc = 0.6944
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 19, n_samples = 155/862, baseline = 0.5502, acc = 0.6747
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 20, n_samples = 145/862, baseline = 0.5384, acc = 0.6709
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 21, n_samples = 142/862, baseline = 0.5514, acc = 0.6931
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 22, n_samples = 169/862, baseline = 0.5671, acc = 0.6710
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 23, n_samples = 183/862, baseline = 0.5655, acc = 0.6775
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 24, n_samples = 184/862, baseline = 0.5560, acc = 0.6785
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 25, n_samples = 168/862, baseline = 0.5476, acc = 0.6873
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 26, n_samples = 180/862, baseline = 0.5689, acc = 0.6496
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 27, n_samples = 180/862, baseline = 0.5411, acc = 0.6584
-- ['Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 28, n_samples = 174/862, baseline = 0.5509, acc = 0.6817
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 29, n_samples = 187/862, baseline = 0.5378, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 30, n_samples = 182/862, baseline = 0.5426, acc = 0.6794
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 31, n_samples = 162/862, baseline = 0.5471, acc = 0.6800
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 32, n_samples = 180/862, baseline = 0.5352, acc = 0.6598
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 33, n_samples = 170/862, baseline = 0.5607, acc = 0.6691
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 34, n_samples = 187/862, baseline = 0.5615, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 35, n_samples = 174/862, baseline = 0.5436, acc = 0.6831
-- ['Age', u'SM', u'Max D', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 36, n_samples = 162/862, baseline = 0.5486, acc = 0.6800
-- [u'Sex', 'Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 37, n_samples = 184/862, baseline = 0.5354, acc = 0.6829
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 38, n_samples = 164/862, baseline = 0.5559, acc = 0.7034
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 39, n_samples = 185/862, baseline = 0.5583, acc = 0.6795
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 40, n_samples = 170/862, baseline = 0.5448, acc = 0.6647
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 41, n_samples = 176/862, baseline = 0.5525, acc = 0.6910
-- ['Age', u'Max D', 'Volume', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 42, n_samples = 171/862, baseline = 0.5572, acc = 0.7120
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 43, n_samples = 186/862, baseline = 0.5473, acc = 0.6701
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 44, n_samples = 189/862, baseline = 0.5691, acc = 0.6493
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 45, n_samples = 169/862, baseline = 0.5556, acc = 0.6753
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 46, n_samples = 158/862, baseline = 0.5213, acc = 0.6520
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 47, n_samples = 171/862, baseline = 0.5644, acc = 0.6903
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 48, n_samples = 173/862, baseline = 0.5544, acc = 0.6560
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 49, n_samples = 179/862, baseline = 0.5417, acc = 0.6779
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 50, n_samples = 157/862, baseline = 0.5504, acc = 0.6894
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 51, n_samples = 159/862, baseline = 0.5519, acc = 0.6885
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 52, n_samples = 161/862, baseline = 0.5321, acc = 0.6662
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 53, n_samples = 163/862, baseline = 0.5451, acc = 0.6896
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 54, n_samples = 170/862, baseline = 0.5535, acc = 0.6720
-- ['Age', u'SM', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 55, n_samples = 157/862, baseline = 0.5518, acc = 0.6610
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 56, n_samples = 187/862, baseline = 0.5467, acc = 0.6785
-- ['Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 57, n_samples = 158/862, baseline = 0.5554, acc = 0.6364
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 58, n_samples = 170/862, baseline = 0.5564, acc = 0.6749
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 59, n_samples = 170/862, baseline = 0.5477, acc = 0.6662
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 60, n_samples = 159/862, baseline = 0.5462, acc = 0.6629
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 61, n_samples = 179/862, baseline = 0.5461, acc = 0.6589
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 62, n_samples = 159/862, baseline = 0.5576, acc = 0.6600
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 63, n_samples = 156/862, baseline = 0.5510, acc = 0.7011
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 64, n_samples = 175/862, baseline = 0.5502, acc = 0.6841
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 65, n_samples = 172/862, baseline = 0.5478, acc = 0.6609
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 66, n_samples = 174/862, baseline = 0.5422, acc = 0.6759
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 67, n_samples = 177/862, baseline = 0.5533, acc = 0.6876
-- [u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 68, n_samples = 169/862, baseline = 0.5556, acc = 0.6955
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 69, n_samples = 172/862, baseline = 0.5493, acc = 0.6870
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 70, n_samples = 195/862, baseline = 0.5517, acc = 0.7136
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 71, n_samples = 170/862, baseline = 0.5549, acc = 0.6908
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 72, n_samples = 177/862, baseline = 0.5504, acc = 0.6715
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 73, n_samples = 175/862, baseline = 0.5517, acc = 0.6798
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 74, n_samples = 159/862, baseline = 0.5477, acc = 0.6785
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 75, n_samples = 182/862, baseline = 0.5529, acc = 0.6941
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=False iter = 76, n_samples = 177/862, baseline = 0.5533, acc = 0.6993
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 77, n_samples = 168/862, baseline = 0.5447, acc = 0.6859
-- ['Age', u'Max D', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 78, n_samples = 153/862, baseline = 0.5515, acc = 0.6812
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 79, n_samples = 155/862, baseline = 0.5516, acc = 0.6860
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 80, n_samples = 185/862, baseline = 0.5495, acc = 0.6957
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 81, n_samples = 191/862, baseline = 0.5633, acc = 0.7049
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 82, n_samples = 167/862, baseline = 0.5511, acc = 0.6921
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 83, n_samples = 161/862, baseline = 0.5492, acc = 0.6519
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 84, n_samples = 166/862, baseline = 0.5374, acc = 0.6624
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 85, n_samples = 186/862, baseline = 0.5399, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 86, n_samples = 174/862, baseline = 0.5596, acc = 0.6919
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 87, n_samples = 174/862, baseline = 0.5523, acc = 0.6642
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 88, n_samples = 178/862, baseline = 0.5585, acc = 0.6725
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 89, n_samples = 167/862, baseline = 0.5367, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 90, n_samples = 168/862, baseline = 0.5605, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 91, n_samples = 156/862, baseline = 0.5552, acc = 0.6827
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 92, n_samples = 178/862, baseline = 0.5629, acc = 0.6871
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 93, n_samples = 163/862, baseline = 0.5393, acc = 0.6824
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 94, n_samples = 164/862, baseline = 0.5501, acc = 0.6877
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 95, n_samples = 170/862, baseline = 0.5477, acc = 0.6821
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=False iter = 96, n_samples = 166/862, baseline = 0.5417, acc = 0.6853
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 97, n_samples = 162/862, baseline = 0.5457, acc = 0.6486
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=False iter = 98, n_samples = 169/862, baseline = 0.5455, acc = 0.6522
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=False iter = 99, n_samples = 147/862, baseline = 0.5441, acc = 0.7049
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 0, n_samples = 180/862, baseline = 0.5469, acc = 0.6994
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 1, n_samples = 180/862, baseline = 0.5484, acc = 0.7009
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 2, n_samples = 172/862, baseline = 0.5493, acc = 0.6768
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 3, n_samples = 165/862, baseline = 0.5395, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 4, n_samples = 176/862, baseline = 0.5466, acc = 0.6545
-- [u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 5, n_samples = 169/862, baseline = 0.5483, acc = 0.6724
-- ['Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 6, n_samples = 189/862, baseline = 0.5498, acc = 0.6686
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 7, n_samples = 159/862, baseline = 0.5448, acc = 0.6885
-- ['Age', u'Max D', 'Volume', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 8, n_samples = 186/862, baseline = 0.5414, acc = 0.6879
-- ['Age', u'Max D', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 9, n_samples = 181/862, baseline = 0.5653, acc = 0.6579
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 10, n_samples = 165/862, baseline = 0.5595, acc = 0.6915
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 11, n_samples = 178/862, baseline = 0.5556, acc = 0.6988
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 12, n_samples = 183/862, baseline = 0.5449, acc = 0.6966
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 13, n_samples = 170/862, baseline = 0.5592, acc = 0.6777
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 14, n_samples = 174/862, baseline = 0.5480, acc = 0.6817
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 15, n_samples = 157/862, baseline = 0.5447, acc = 0.6766
-- ['Age', u'SM', u'Max D', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 16, n_samples = 180/862, baseline = 0.5367, acc = 0.6789
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 17, n_samples = 159/862, baseline = 0.5448, acc = 0.6615
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 18, n_samples = 175/862, baseline = 0.5444, acc = 0.6987
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 19, n_samples = 166/862, baseline = 0.5532, acc = 0.6710
-- [u'Sex', 'Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 20, n_samples = 179/862, baseline = 0.5359, acc = 0.6867
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 21, n_samples = 176/862, baseline = 0.5729, acc = 0.6866
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 22, n_samples = 146/862, baseline = 0.5517, acc = 0.6788
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 23, n_samples = 184/862, baseline = 0.5457, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 24, n_samples = 188/862, baseline = 0.5593, acc = 0.6795
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 25, n_samples = 174/862, baseline = 0.5494, acc = 0.6802
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 26, n_samples = 180/862, baseline = 0.5616, acc = 0.6701
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 27, n_samples = 174/862, baseline = 0.5436, acc = 0.6584
-- [u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 28, n_samples = 171/862, baseline = 0.5543, acc = 0.6700
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 29, n_samples = 172/862, baseline = 0.5420, acc = 0.6797
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 30, n_samples = 156/862, baseline = 0.5482, acc = 0.7068
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 31, n_samples = 175/862, baseline = 0.5546, acc = 0.6754
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 32, n_samples = 171/862, baseline = 0.5384, acc = 0.6874
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 33, n_samples = 164/862, baseline = 0.5587, acc = 0.6791
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 34, n_samples = 150/862, baseline = 0.5702, acc = 0.6643
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 35, n_samples = 173/862, baseline = 0.5660, acc = 0.6909
-- [u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 36, n_samples = 170/862, baseline = 0.5506, acc = 0.6662
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 37, n_samples = 162/862, baseline = 0.5643, acc = 0.6929
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 38, n_samples = 172/862, baseline = 0.5623, acc = 0.7043
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 39, n_samples = 170/862, baseline = 0.5462, acc = 0.6893
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 40, n_samples = 175/862, baseline = 0.5400, acc = 0.6943
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 41, n_samples = 177/862, baseline = 0.5577, acc = 0.6482
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 42, n_samples = 187/862, baseline = 0.5511, acc = 0.6919
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 43, n_samples = 162/862, baseline = 0.5471, acc = 0.7000
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 44, n_samples = 177/862, baseline = 0.5504, acc = 0.6920
-- [u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 45, n_samples = 180/862, baseline = 0.5543, acc = 0.6833
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 46, n_samples = 191/862, baseline = 0.5469, acc = 0.6870
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 47, n_samples = 170/862, baseline = 0.5506, acc = 0.6850
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 48, n_samples = 181/862, baseline = 0.5448, acc = 0.6858
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 49, n_samples = 181/862, baseline = 0.5507, acc = 0.6843
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 50, n_samples = 174/862, baseline = 0.5465, acc = 0.6933
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 51, n_samples = 165/862, baseline = 0.5438, acc = 0.6743
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 52, n_samples = 179/862, baseline = 0.5490, acc = 0.7013
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 53, n_samples = 167/862, baseline = 0.5482, acc = 0.6748
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 54, n_samples = 166/862, baseline = 0.5460, acc = 0.6925
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 55, n_samples = 176/862, baseline = 0.5408, acc = 0.6691
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 56, n_samples = 155/862, baseline = 0.5559, acc = 0.6535
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 57, n_samples = 172/862, baseline = 0.5507, acc = 0.6754
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 58, n_samples = 155/862, baseline = 0.5545, acc = 0.6902
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 59, n_samples = 171/862, baseline = 0.5441, acc = 0.6831
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 60, n_samples = 170/862, baseline = 0.5520, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 61, n_samples = 156/862, baseline = 0.5453, acc = 0.6884
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 62, n_samples = 163/862, baseline = 0.5494, acc = 0.6910
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 63, n_samples = 169/862, baseline = 0.5599, acc = 0.6869
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 64, n_samples = 172/862, baseline = 0.5406, acc = 0.6725
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 65, n_samples = 161/862, baseline = 0.5578, acc = 0.6748
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 66, n_samples = 185/862, baseline = 0.5480, acc = 0.6869
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 67, n_samples = 156/862, baseline = 0.5567, acc = 0.6572
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 68, n_samples = 174/862, baseline = 0.5654, acc = 0.6715
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 69, n_samples = 161/862, baseline = 0.5521, acc = 0.6961
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 70, n_samples = 173/862, baseline = 0.5443, acc = 0.6763
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 71, n_samples = 176/862, baseline = 0.5539, acc = 0.6895
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 72, n_samples = 175/862, baseline = 0.5590, acc = 0.6827
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 73, n_samples = 200/862, baseline = 0.5529, acc = 0.7145
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 74, n_samples = 171/862, baseline = 0.5601, acc = 0.7004
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 75, n_samples = 177/862, baseline = 0.5504, acc = 0.6730
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 76, n_samples = 151/862, baseline = 0.5513, acc = 0.6906
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 77, n_samples = 172/862, baseline = 0.5435, acc = 0.6913
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 78, n_samples = 172/862, baseline = 0.5464, acc = 0.6449
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 79, n_samples = 175/862, baseline = 0.5415, acc = 0.6885
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 80, n_samples = 167/862, baseline = 0.5482, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 81, n_samples = 164/862, baseline = 0.5458, acc = 0.6819
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=False iter = 82, n_samples = 149/862, baseline = 0.5470, acc = 0.6999
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 83, n_samples = 172/862, baseline = 0.5507, acc = 0.6855
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 84, n_samples = 176/862, baseline = 0.5350, acc = 0.6793
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 85, n_samples = 189/862, baseline = 0.5557, acc = 0.6538
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 86, n_samples = 171/862, baseline = 0.5427, acc = 0.7004
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 87, n_samples = 171/862, baseline = 0.5470, acc = 0.6874
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 88, n_samples = 174/862, baseline = 0.5596, acc = 0.6904
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 89, n_samples = 163/862, baseline = 0.5479, acc = 0.6953
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 90, n_samples = 160/862, baseline = 0.5442, acc = 0.6695
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 91, n_samples = 172/862, baseline = 0.5551, acc = 0.6928
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 92, n_samples = 184/862, baseline = 0.5487, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 93, n_samples = 179/862, baseline = 0.5564, acc = 0.6955
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 94, n_samples = 161/862, baseline = 0.5535, acc = 0.6776
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 95, n_samples = 167/862, baseline = 0.5496, acc = 0.6676
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 96, n_samples = 173/862, baseline = 0.5515, acc = 0.6952
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 97, n_samples = 182/862, baseline = 0.5456, acc = 0.6897
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=False iter = 98, n_samples = 186/862, baseline = 0.5695, acc = 0.6583
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=False iter = 99, n_samples = 182/862, baseline = 0.5618, acc = 0.6868
-- [u'Sex', 'Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0200, intercept=True iter = 0, n_samples = 175/862, baseline = 0.5502, acc = 0.6739
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 1, n_samples = 173/862, baseline = 0.5559, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 2, n_samples = 169/862, baseline = 0.5469, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 3, n_samples = 184/862, baseline = 0.5413, acc = 0.6740
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 4, n_samples = 185/862, baseline = 0.5554, acc = 0.6809
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 5, n_samples = 180/862, baseline = 0.5411, acc = 0.6833
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 6, n_samples = 182/862, baseline = 0.5559, acc = 0.6868
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 7, n_samples = 187/862, baseline = 0.5481, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 8, n_samples = 181/862, baseline = 0.5507, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 9, n_samples = 177/862, baseline = 0.5547, acc = 0.6788
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 10, n_samples = 165/862, baseline = 0.5552, acc = 0.6801
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 11, n_samples = 170/862, baseline = 0.5419, acc = 0.6850
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 12, n_samples = 184/862, baseline = 0.5619, acc = 0.6903
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 13, n_samples = 161/862, baseline = 0.5464, acc = 0.6819
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 14, n_samples = 196/862, baseline = 0.5556, acc = 0.6532
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 15, n_samples = 171/862, baseline = 0.5586, acc = 0.6599
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 16, n_samples = 188/862, baseline = 0.5697, acc = 0.6944
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 17, n_samples = 183/862, baseline = 0.5567, acc = 0.6701
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 18, n_samples = 172/862, baseline = 0.5362, acc = 0.6696
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 19, n_samples = 195/862, baseline = 0.5442, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 20, n_samples = 166/862, baseline = 0.5560, acc = 0.6753
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 21, n_samples = 162/862, baseline = 0.5514, acc = 0.6800
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 22, n_samples = 185/862, baseline = 0.5318, acc = 0.6544
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 23, n_samples = 191/862, baseline = 0.5499, acc = 0.6811
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 24, n_samples = 177/862, baseline = 0.5518, acc = 0.6920
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 25, n_samples = 168/862, baseline = 0.5403, acc = 0.6729
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 26, n_samples = 183/862, baseline = 0.5552, acc = 0.6863
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 27, n_samples = 167/862, baseline = 0.5381, acc = 0.6590
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 28, n_samples = 188/862, baseline = 0.5415, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 29, n_samples = 182/862, baseline = 0.5485, acc = 0.6926
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 30, n_samples = 167/862, baseline = 0.5597, acc = 0.6748
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 31, n_samples = 157/862, baseline = 0.5546, acc = 0.6709
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 32, n_samples = 174/862, baseline = 0.5552, acc = 0.6788
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 33, n_samples = 176/862, baseline = 0.5466, acc = 0.6808
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 34, n_samples = 176/862, baseline = 0.5437, acc = 0.6662
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 35, n_samples = 179/862, baseline = 0.5461, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 36, n_samples = 166/862, baseline = 0.5575, acc = 0.6839
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 37, n_samples = 186/862, baseline = 0.5577, acc = 0.7012
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 38, n_samples = 161/862, baseline = 0.5464, acc = 0.6933
-- [u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 39, n_samples = 184/862, baseline = 0.5428, acc = 0.6711
-- ['Age', u'Max D', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 40, n_samples = 171/862, baseline = 0.5586, acc = 0.6961
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 41, n_samples = 182/862, baseline = 0.5324, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 42, n_samples = 152/862, baseline = 0.5394, acc = 0.6704
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 43, n_samples = 166/862, baseline = 0.5603, acc = 0.6954
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 44, n_samples = 173/862, baseline = 0.5385, acc = 0.6763
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 45, n_samples = 179/862, baseline = 0.5637, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 46, n_samples = 173/862, baseline = 0.5501, acc = 0.6894
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 47, n_samples = 180/862, baseline = 0.5484, acc = 0.6760
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 48, n_samples = 160/862, baseline = 0.5313, acc = 0.6624
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 49, n_samples = 161/862, baseline = 0.5478, acc = 0.6862
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 50, n_samples = 200/862, baseline = 0.5514, acc = 0.6903
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 51, n_samples = 148/862, baseline = 0.5490, acc = 0.6835
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 52, n_samples = 177/862, baseline = 0.5518, acc = 0.6920
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 53, n_samples = 168/862, baseline = 0.5447, acc = 0.6758
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 54, n_samples = 189/862, baseline = 0.5483, acc = 0.6746
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 55, n_samples = 170/862, baseline = 0.5535, acc = 0.6749
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 56, n_samples = 161/862, baseline = 0.5506, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 57, n_samples = 191/862, baseline = 0.5499, acc = 0.6736
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 58, n_samples = 199/862, baseline = 0.5475, acc = 0.6757
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 59, n_samples = 179/862, baseline = 0.5432, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 60, n_samples = 202/862, baseline = 0.5652, acc = 0.6788
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 61, n_samples = 185/862, baseline = 0.5554, acc = 0.6632
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 62, n_samples = 168/862, baseline = 0.5576, acc = 0.6772
-- ['Age', u'Max D', 'Volume', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 63, n_samples = 162/862, baseline = 0.5486, acc = 0.6829
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 64, n_samples = 165/862, baseline = 0.5509, acc = 0.6729
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 65, n_samples = 182/862, baseline = 0.5382, acc = 0.6706
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 66, n_samples = 162/862, baseline = 0.5500, acc = 0.6900
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 67, n_samples = 201/862, baseline = 0.5567, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 68, n_samples = 166/862, baseline = 0.5431, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 69, n_samples = 172/862, baseline = 0.5522, acc = 0.6899
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 70, n_samples = 167/862, baseline = 0.5554, acc = 0.6892
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 71, n_samples = 176/862, baseline = 0.5671, acc = 0.6735
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 72, n_samples = 180/862, baseline = 0.5396, acc = 0.6613
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 73, n_samples = 175/862, baseline = 0.5560, acc = 0.6929
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 74, n_samples = 176/862, baseline = 0.5525, acc = 0.6764
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 75, n_samples = 157/862, baseline = 0.5461, acc = 0.6865
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 76, n_samples = 168/862, baseline = 0.5476, acc = 0.6571
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 77, n_samples = 160/862, baseline = 0.5584, acc = 0.6880
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 78, n_samples = 155/862, baseline = 0.5601, acc = 0.6492
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 79, n_samples = 158/862, baseline = 0.5497, acc = 0.6719
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 80, n_samples = 178/862, baseline = 0.5409, acc = 0.6769
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 81, n_samples = 162/862, baseline = 0.5500, acc = 0.6800
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 82, n_samples = 176/862, baseline = 0.5481, acc = 0.6778
-- ['Age', u'Max D', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 83, n_samples = 172/862, baseline = 0.5478, acc = 0.6652
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 84, n_samples = 171/862, baseline = 0.5557, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 85, n_samples = 191/862, baseline = 0.5618, acc = 0.6811
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 86, n_samples = 164/862, baseline = 0.5458, acc = 0.6619
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 87, n_samples = 165/862, baseline = 0.5423, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 88, n_samples = 187/862, baseline = 0.5585, acc = 0.6874
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 89, n_samples = 168/862, baseline = 0.5418, acc = 0.6715
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 90, n_samples = 171/862, baseline = 0.5456, acc = 0.6773
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 91, n_samples = 186/862, baseline = 0.5459, acc = 0.6864
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 92, n_samples = 162/862, baseline = 0.5600, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 93, n_samples = 177/862, baseline = 0.5474, acc = 0.6832
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 94, n_samples = 169/862, baseline = 0.5440, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 95, n_samples = 175/862, baseline = 0.5444, acc = 0.6798
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0200, intercept=True iter = 96, n_samples = 178/862, baseline = 0.5614, acc = 0.7120
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0200, intercept=True iter = 97, n_samples = 176/862, baseline = 0.5554, acc = 0.6837
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 98, n_samples = 179/862, baseline = 0.5534, acc = 0.6720
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0200, intercept=True iter = 99, n_samples = 174/862, baseline = 0.5291, acc = 0.6570
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 0, n_samples = 172/862, baseline = 0.5435, acc = 0.6971
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 1, n_samples = 185/862, baseline = 0.5539, acc = 0.6913
-- [u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 2, n_samples = 176/862, baseline = 0.5510, acc = 0.6924
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 3, n_samples = 181/862, baseline = 0.5683, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 4, n_samples = 167/862, baseline = 0.5568, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 5, n_samples = 165/862, baseline = 0.5610, acc = 0.6858
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 6, n_samples = 164/862, baseline = 0.5659, acc = 0.6748
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 7, n_samples = 174/862, baseline = 0.5422, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 8, n_samples = 152/862, baseline = 0.5423, acc = 0.6915
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 9, n_samples = 148/862, baseline = 0.5504, acc = 0.6905
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 10, n_samples = 161/862, baseline = 0.5478, acc = 0.6748
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 11, n_samples = 175/862, baseline = 0.5546, acc = 0.6798
-- ['Age', u'Max D', 'Volume', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 12, n_samples = 182/862, baseline = 0.5338, acc = 0.6809
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 13, n_samples = 190/862, baseline = 0.5446, acc = 0.6860
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 14, n_samples = 151/862, baseline = 0.5429, acc = 0.6737
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 15, n_samples = 175/862, baseline = 0.5517, acc = 0.6754
-- [u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 16, n_samples = 165/862, baseline = 0.5681, acc = 0.6571
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 17, n_samples = 172/862, baseline = 0.5623, acc = 0.6986
-- [u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 18, n_samples = 179/862, baseline = 0.5549, acc = 0.6999
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 19, n_samples = 179/862, baseline = 0.5622, acc = 0.6720
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 20, n_samples = 153/862, baseline = 0.5515, acc = 0.6685
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 21, n_samples = 174/862, baseline = 0.5494, acc = 0.6817
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 22, n_samples = 194/862, baseline = 0.5599, acc = 0.6961
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 23, n_samples = 174/862, baseline = 0.5552, acc = 0.6890
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 24, n_samples = 176/862, baseline = 0.5583, acc = 0.6822
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 25, n_samples = 175/862, baseline = 0.5619, acc = 0.7162
-- [u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 26, n_samples = 185/862, baseline = 0.5465, acc = 0.6721
-- ['Age', u'SM', u'Max D', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 27, n_samples = 157/862, baseline = 0.5589, acc = 0.6709
-- ['Age', u'Max D', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 28, n_samples = 176/862, baseline = 0.5481, acc = 0.6866
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 29, n_samples = 167/862, baseline = 0.5396, acc = 0.6820
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 30, n_samples = 161/862, baseline = 0.5506, acc = 0.6862
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 31, n_samples = 167/862, baseline = 0.5525, acc = 0.6835
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 32, n_samples = 177/862, baseline = 0.5591, acc = 0.6876
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 33, n_samples = 166/862, baseline = 0.5560, acc = 0.6940
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 34, n_samples = 163/862, baseline = 0.5408, acc = 0.6867
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 35, n_samples = 157/862, baseline = 0.5461, acc = 0.6723
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 36, n_samples = 171/862, baseline = 0.5297, acc = 0.6657
-- [u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 37, n_samples = 179/862, baseline = 0.5373, acc = 0.6779
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 38, n_samples = 179/862, baseline = 0.5403, acc = 0.6837
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 39, n_samples = 184/862, baseline = 0.5413, acc = 0.6785
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 40, n_samples = 161/862, baseline = 0.5392, acc = 0.6762
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 41, n_samples = 169/862, baseline = 0.5455, acc = 0.6782
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 42, n_samples = 179/862, baseline = 0.5505, acc = 0.6896
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 43, n_samples = 189/862, baseline = 0.5290, acc = 0.6553
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 44, n_samples = 196/862, baseline = 0.5405, acc = 0.6982
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 45, n_samples = 162/862, baseline = 0.5500, acc = 0.6900
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 46, n_samples = 155/862, baseline = 0.5403, acc = 0.6662
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 47, n_samples = 195/862, baseline = 0.5547, acc = 0.6837
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 48, n_samples = 168/862, baseline = 0.5490, acc = 0.6916
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 49, n_samples = 172/862, baseline = 0.5406, acc = 0.6826
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 50, n_samples = 178/862, baseline = 0.5570, acc = 0.6754
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 51, n_samples = 182/862, baseline = 0.5515, acc = 0.6853
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 52, n_samples = 185/862, baseline = 0.5465, acc = 0.6824
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 53, n_samples = 173/862, baseline = 0.5646, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 54, n_samples = 186/862, baseline = 0.5429, acc = 0.6746
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 55, n_samples = 192/862, baseline = 0.5522, acc = 0.6791
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 56, n_samples = 185/862, baseline = 0.5672, acc = 0.6484
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 57, n_samples = 187/862, baseline = 0.5422, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 58, n_samples = 184/862, baseline = 0.5546, acc = 0.6903
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 59, n_samples = 172/862, baseline = 0.5667, acc = 0.7014
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 60, n_samples = 164/862, baseline = 0.5415, acc = 0.6877
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 61, n_samples = 169/862, baseline = 0.5527, acc = 0.6797
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LinearSVC: C = 0.0400, intercept=True iter = 62, n_samples = 174/862, baseline = 0.5480, acc = 0.6846
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 63, n_samples = 166/862, baseline = 0.5647, acc = 0.6681
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 64, n_samples = 188/862, baseline = 0.5475, acc = 0.6528
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 65, n_samples = 177/862, baseline = 0.5547, acc = 0.6891
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 66, n_samples = 180/862, baseline = 0.5425, acc = 0.6818
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 67, n_samples = 174/862, baseline = 0.5494, acc = 0.6831
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 68, n_samples = 191/862, baseline = 0.5589, acc = 0.6632
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 69, n_samples = 173/862, baseline = 0.5486, acc = 0.6749
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 70, n_samples = 173/862, baseline = 0.5573, acc = 0.6981
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 71, n_samples = 189/862, baseline = 0.5617, acc = 0.6716
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 72, n_samples = 172/862, baseline = 0.5667, acc = 0.6899
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 73, n_samples = 159/862, baseline = 0.5718, acc = 0.6871
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 74, n_samples = 156/862, baseline = 0.5425, acc = 0.6756
-- ['Age', u'Max D', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 75, n_samples = 174/862, baseline = 0.5523, acc = 0.6962
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 76, n_samples = 160/862, baseline = 0.5456, acc = 0.6994
-- [u'Max D', 'Volume', 'Max_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 77, n_samples = 165/862, baseline = 0.5610, acc = 0.6887
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 78, n_samples = 158/862, baseline = 0.5724, acc = 0.6776
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 79, n_samples = 165/862, baseline = 0.5481, acc = 0.6829
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 80, n_samples = 179/862, baseline = 0.5461, acc = 0.6911
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 81, n_samples = 156/862, baseline = 0.5453, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 82, n_samples = 186/862, baseline = 0.5518, acc = 0.7012
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 83, n_samples = 176/862, baseline = 0.5452, acc = 0.6968
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 84, n_samples = 186/862, baseline = 0.5547, acc = 0.6908
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 85, n_samples = 172/862, baseline = 0.5435, acc = 0.6710
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 86, n_samples = 182/862, baseline = 0.5618, acc = 0.6868
-- ['Age', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 87, n_samples = 153/862, baseline = 0.5430, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 88, n_samples = 176/862, baseline = 0.5496, acc = 0.7041
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 89, n_samples = 162/862, baseline = 0.5586, acc = 0.6943
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 90, n_samples = 158/862, baseline = 0.5440, acc = 0.6818
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 91, n_samples = 163/862, baseline = 0.5494, acc = 0.6838
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 92, n_samples = 184/862, baseline = 0.5575, acc = 0.6991
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 93, n_samples = 170/862, baseline = 0.5578, acc = 0.7009
-- ['Age', u'SM', u'Max D', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 94, n_samples = 179/862, baseline = 0.5461, acc = 0.6691
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 95, n_samples = 180/862, baseline = 0.5543, acc = 0.6891
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0400, intercept=True iter = 96, n_samples = 172/862, baseline = 0.5493, acc = 0.6855
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 97, n_samples = 179/862, baseline = 0.5505, acc = 0.6867
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0400, intercept=True iter = 98, n_samples = 156/862, baseline = 0.5680, acc = 0.6601
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0400, intercept=True iter = 99, n_samples = 184/862, baseline = 0.5634, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 0, n_samples = 157/862, baseline = 0.5589, acc = 0.6865
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 1, n_samples = 158/862, baseline = 0.5426, acc = 0.6932
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 2, n_samples = 169/862, baseline = 0.5469, acc = 0.6869
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 3, n_samples = 155/862, baseline = 0.5431, acc = 0.6549
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 4, n_samples = 168/862, baseline = 0.5533, acc = 0.6859
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 5, n_samples = 184/862, baseline = 0.5354, acc = 0.6740
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 6, n_samples = 161/862, baseline = 0.5407, acc = 0.6919
-- ['Age', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 7, n_samples = 166/862, baseline = 0.5517, acc = 0.7069
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 8, n_samples = 174/862, baseline = 0.5480, acc = 0.6788
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 9, n_samples = 161/862, baseline = 0.5549, acc = 0.7019
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 10, n_samples = 172/862, baseline = 0.5594, acc = 0.7014
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 11, n_samples = 175/862, baseline = 0.5633, acc = 0.6827
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 12, n_samples = 136/862, baseline = 0.5537, acc = 0.6763
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 13, n_samples = 190/862, baseline = 0.5536, acc = 0.6682
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 14, n_samples = 189/862, baseline = 0.5379, acc = 0.6895
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 15, n_samples = 161/862, baseline = 0.5521, acc = 0.6876
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 16, n_samples = 188/862, baseline = 0.5475, acc = 0.6914
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 17, n_samples = 187/862, baseline = 0.5422, acc = 0.6785
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 18, n_samples = 173/862, baseline = 0.5573, acc = 0.6894
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 19, n_samples = 170/862, baseline = 0.5592, acc = 0.6720
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 20, n_samples = 153/862, baseline = 0.5543, acc = 0.6897
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 21, n_samples = 174/862, baseline = 0.5436, acc = 0.6831
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 22, n_samples = 181/862, baseline = 0.5624, acc = 0.7078
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 23, n_samples = 161/862, baseline = 0.5535, acc = 0.6805
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 24, n_samples = 169/862, baseline = 0.5397, acc = 0.6753
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 25, n_samples = 179/862, baseline = 0.5447, acc = 0.6662
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 26, n_samples = 167/862, baseline = 0.5511, acc = 0.6777
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 27, n_samples = 178/862, baseline = 0.5526, acc = 0.7003
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 28, n_samples = 195/862, baseline = 0.5532, acc = 0.6942
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 29, n_samples = 159/862, baseline = 0.5676, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 30, n_samples = 182/862, baseline = 0.5441, acc = 0.6824
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 31, n_samples = 167/862, baseline = 0.5554, acc = 0.6748
-- [u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 32, n_samples = 180/862, baseline = 0.5499, acc = 0.6789
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 33, n_samples = 182/862, baseline = 0.5515, acc = 0.6706
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 34, n_samples = 156/862, baseline = 0.5439, acc = 0.6813
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 35, n_samples = 185/862, baseline = 0.5495, acc = 0.6928
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 36, n_samples = 198/862, baseline = 0.5617, acc = 0.6807
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 37, n_samples = 171/862, baseline = 0.5557, acc = 0.6874
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 38, n_samples = 186/862, baseline = 0.5562, acc = 0.6716
-- ['Age', u'SM', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 39, n_samples = 170/862, baseline = 0.5535, acc = 0.6879
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 40, n_samples = 171/862, baseline = 0.5398, acc = 0.6975
-- [u'Sex', 'Age', u'Max D', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 41, n_samples = 174/862, baseline = 0.5465, acc = 0.7020
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 42, n_samples = 173/862, baseline = 0.5646, acc = 0.6923
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 43, n_samples = 172/862, baseline = 0.5507, acc = 0.6812
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 44, n_samples = 161/862, baseline = 0.5407, acc = 0.6648
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 45, n_samples = 166/862, baseline = 0.5445, acc = 0.6882
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 46, n_samples = 197/862, baseline = 0.5383, acc = 0.6737
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 47, n_samples = 163/862, baseline = 0.5408, acc = 0.6896
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 48, n_samples = 190/862, baseline = 0.5327, acc = 0.6443
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 49, n_samples = 188/862, baseline = 0.5549, acc = 0.6944
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 50, n_samples = 174/862, baseline = 0.5451, acc = 0.6948
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 51, n_samples = 179/862, baseline = 0.5593, acc = 0.6589
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 52, n_samples = 168/862, baseline = 0.5562, acc = 0.6873
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 53, n_samples = 182/862, baseline = 0.5471, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 54, n_samples = 152/862, baseline = 0.5324, acc = 0.6563
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 55, n_samples = 181/862, baseline = 0.5653, acc = 0.6799
-- [u'Sex', 'Age', u'Max D', 'Volume', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 56, n_samples = 179/862, baseline = 0.5534, acc = 0.6779
-- [u'Sex', 'Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 57, n_samples = 170/862, baseline = 0.5578, acc = 0.6835
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 58, n_samples = 162/862, baseline = 0.5514, acc = 0.6743
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 59, n_samples = 171/862, baseline = 0.5557, acc = 0.6874
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 60, n_samples = 181/862, baseline = 0.5374, acc = 0.7107
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 61, n_samples = 164/862, baseline = 0.5358, acc = 0.6848
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 62, n_samples = 185/862, baseline = 0.5391, acc = 0.6987
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 63, n_samples = 176/862, baseline = 0.5481, acc = 0.6924
-- [u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 64, n_samples = 171/862, baseline = 0.5514, acc = 0.7004
-- [u'Sex', 'Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 65, n_samples = 181/862, baseline = 0.5463, acc = 0.6828
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 66, n_samples = 191/862, baseline = 0.5559, acc = 0.7049
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 67, n_samples = 161/862, baseline = 0.5449, acc = 0.6947
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 68, n_samples = 170/862, baseline = 0.5520, acc = 0.6908
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 69, n_samples = 185/862, baseline = 0.5451, acc = 0.6869
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 70, n_samples = 181/862, baseline = 0.5565, acc = 0.6960
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 71, n_samples = 188/862, baseline = 0.5415, acc = 0.6543
-- ['Age', u'SM', u'Max D', 'Volume', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 72, n_samples = 167/862, baseline = 0.5410, acc = 0.6878
-- [u'Sex', 'Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 73, n_samples = 140/862, baseline = 0.5416, acc = 0.6676
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 74, n_samples = 175/862, baseline = 0.5546, acc = 0.6856
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 75, n_samples = 176/862, baseline = 0.5379, acc = 0.6910
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 76, n_samples = 182/862, baseline = 0.5500, acc = 0.6882
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 77, n_samples = 152/862, baseline = 0.5521, acc = 0.6845
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 78, n_samples = 151/862, baseline = 0.5499, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'History_of_Hemorrhage', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 79, n_samples = 158/862, baseline = 0.5412, acc = 0.6705
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 80, n_samples = 162/862, baseline = 0.5414, acc = 0.7043
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 81, n_samples = 185/862, baseline = 0.5539, acc = 0.6839
-- [u'Sex', 'Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 82, n_samples = 151/862, baseline = 0.5584, acc = 0.6596
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 83, n_samples = 178/862, baseline = 0.5541, acc = 0.6842
-- ['Age', u'Max D', 'Volume', u'Embo', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 84, n_samples = 157/862, baseline = 0.5631, acc = 0.6894
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 85, n_samples = 167/862, baseline = 0.5309, acc = 0.6619
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 86, n_samples = 157/862, baseline = 0.5603, acc = 0.6610
-- ['Age', u'SM', u'Max D', 'History_of_Hemorrhage', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 87, n_samples = 190/862, baseline = 0.5580, acc = 0.6786
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 88, n_samples = 170/862, baseline = 0.5650, acc = 0.6893
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 89, n_samples = 158/862, baseline = 0.5412, acc = 0.6818
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 90, n_samples = 178/862, baseline = 0.5453, acc = 0.6652
-- ['Age', u'SM', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 91, n_samples = 155/862, baseline = 0.5545, acc = 0.6761
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 92, n_samples = 193/862, baseline = 0.5426, acc = 0.6876
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 93, n_samples = 170/862, baseline = 0.5491, acc = 0.6720
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 94, n_samples = 163/862, baseline = 0.5465, acc = 0.6824
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 95, n_samples = 179/862, baseline = 0.5637, acc = 0.6706
-- ['Age', u'Max D', 'Volume', u'Embo', 'Aneurysm', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 96, n_samples = 187/862, baseline = 0.5393, acc = 0.6741
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots', 'Early_RIC']
LinearSVC: C = 0.0800, intercept=True iter = 97, n_samples = 164/862, baseline = 0.5358, acc = 0.6605
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots']
LinearSVC: C = 0.0800, intercept=True iter = 98, n_samples = 189/862, baseline = 0.5483, acc = 0.6776
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LinearSVC: C = 0.0800, intercept=True iter = 99, n_samples = 188/862, baseline = 0.5475, acc = 0.6736
-- [u'Sex', 'Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0200, intercept=False iter = 0, n_samples = 350/862, baseline = 0.5508, acc = 0.6758
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 1, n_samples = 333/862, baseline = 0.5652, acc = 0.6843
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 2, n_samples = 357/862, baseline = 0.5446, acc = 0.6772
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 3, n_samples = 320/862, baseline = 0.5535, acc = 0.6845
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 4, n_samples = 349/862, baseline = 0.5341, acc = 0.6550
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 5, n_samples = 338/862, baseline = 0.5573, acc = 0.6775
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 6, n_samples = 342/862, baseline = 0.5462, acc = 0.6654
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 7, n_samples = 350/862, baseline = 0.5410, acc = 0.6895
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 8, n_samples = 324/862, baseline = 0.5781, acc = 0.6766
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 9, n_samples = 336/862, baseline = 0.5494, acc = 0.6825
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 10, n_samples = 335/862, baseline = 0.5541, acc = 0.6850
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 11, n_samples = 336/862, baseline = 0.5570, acc = 0.6749
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 12, n_samples = 342/862, baseline = 0.5596, acc = 0.6865
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 13, n_samples = 346/862, baseline = 0.5504, acc = 0.6764
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 14, n_samples = 334/862, baseline = 0.5417, acc = 0.6534
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 15, n_samples = 326/862, baseline = 0.5205, acc = 0.6586
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 16, n_samples = 364/862, baseline = 0.5542, acc = 0.7068
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 17, n_samples = 348/862, baseline = 0.5467, acc = 0.6770
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 18, n_samples = 359/862, baseline = 0.5368, acc = 0.6700
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 19, n_samples = 354/862, baseline = 0.5709, acc = 0.6673
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 20, n_samples = 367/862, baseline = 0.5616, acc = 0.6566
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 21, n_samples = 359/862, baseline = 0.5427, acc = 0.6660
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 22, n_samples = 329/862, baseline = 0.5347, acc = 0.6867
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 23, n_samples = 341/862, baseline = 0.5489, acc = 0.6641
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 24, n_samples = 357/862, baseline = 0.5505, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 25, n_samples = 355/862, baseline = 0.5325, acc = 0.6588
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 26, n_samples = 357/862, baseline = 0.5564, acc = 0.6832
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 27, n_samples = 317/862, baseline = 0.5450, acc = 0.6642
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 28, n_samples = 353/862, baseline = 0.5462, acc = 0.7073
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 29, n_samples = 353/862, baseline = 0.5658, acc = 0.6778
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 30, n_samples = 351/862, baseline = 0.5499, acc = 0.6810
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 31, n_samples = 353/862, baseline = 0.5442, acc = 0.6935
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 32, n_samples = 344/862, baseline = 0.5656, acc = 0.6467
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 33, n_samples = 335/862, baseline = 0.5503, acc = 0.6660
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 34, n_samples = 330/862, baseline = 0.5639, acc = 0.7049
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 35, n_samples = 339/862, baseline = 0.5507, acc = 0.6597
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 36, n_samples = 313/862, baseline = 0.5592, acc = 0.6721
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 37, n_samples = 373/862, baseline = 0.5501, acc = 0.7014
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 38, n_samples = 356/862, baseline = 0.5415, acc = 0.6680
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 39, n_samples = 347/862, baseline = 0.5476, acc = 0.6777
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 40, n_samples = 350/862, baseline = 0.5273, acc = 0.6797
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 41, n_samples = 352/862, baseline = 0.5392, acc = 0.6804
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 42, n_samples = 334/862, baseline = 0.5511, acc = 0.6799
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 43, n_samples = 338/862, baseline = 0.5515, acc = 0.6679
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 44, n_samples = 353/862, baseline = 0.5521, acc = 0.6640
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 45, n_samples = 354/862, baseline = 0.5551, acc = 0.6988
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 46, n_samples = 334/862, baseline = 0.5511, acc = 0.6648
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 47, n_samples = 369/862, baseline = 0.5740, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 48, n_samples = 326/862, baseline = 0.5466, acc = 0.6604
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 49, n_samples = 328/862, baseline = 0.5730, acc = 0.6648
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 50, n_samples = 352/862, baseline = 0.5392, acc = 0.6647
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 51, n_samples = 322/862, baseline = 0.5593, acc = 0.6963
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 52, n_samples = 344/862, baseline = 0.5463, acc = 0.6525
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 53, n_samples = 350/862, baseline = 0.5586, acc = 0.6758
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 54, n_samples = 329/862, baseline = 0.5460, acc = 0.6604
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 55, n_samples = 339/862, baseline = 0.5602, acc = 0.6845
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 56, n_samples = 335/862, baseline = 0.5598, acc = 0.6698
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 57, n_samples = 340/862, baseline = 0.5383, acc = 0.6839
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 58, n_samples = 359/862, baseline = 0.5527, acc = 0.6680
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 59, n_samples = 367/862, baseline = 0.5677, acc = 0.6808
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 60, n_samples = 365/862, baseline = 0.5614, acc = 0.6861
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 61, n_samples = 367/862, baseline = 0.5374, acc = 0.6505
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 62, n_samples = 342/862, baseline = 0.5423, acc = 0.6846
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 63, n_samples = 331/862, baseline = 0.5424, acc = 0.6685
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 64, n_samples = 364/862, baseline = 0.5643, acc = 0.6687
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 65, n_samples = 368/862, baseline = 0.5466, acc = 0.6943
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 66, n_samples = 364/862, baseline = 0.5402, acc = 0.6727
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 67, n_samples = 358/862, baseline = 0.5575, acc = 0.6548
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 68, n_samples = 353/862, baseline = 0.5599, acc = 0.7073
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 69, n_samples = 339/862, baseline = 0.5583, acc = 0.6788
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 70, n_samples = 361/862, baseline = 0.5928, acc = 0.6587
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 71, n_samples = 360/862, baseline = 0.5598, acc = 0.6892
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 72, n_samples = 357/862, baseline = 0.5505, acc = 0.6713
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 73, n_samples = 363/862, baseline = 0.5571, acc = 0.6713
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 74, n_samples = 351/862, baseline = 0.5460, acc = 0.6614
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 75, n_samples = 354/862, baseline = 0.5768, acc = 0.6535
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 76, n_samples = 338/862, baseline = 0.5515, acc = 0.6756
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 77, n_samples = 319/862, baseline = 0.5838, acc = 0.6225
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 78, n_samples = 337/862, baseline = 0.5543, acc = 0.6952
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 79, n_samples = 354/862, baseline = 0.5748, acc = 0.6969
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 80, n_samples = 328/862, baseline = 0.5487, acc = 0.7172
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 81, n_samples = 345/862, baseline = 0.5358, acc = 0.6615
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 82, n_samples = 340/862, baseline = 0.5402, acc = 0.6935
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 83, n_samples = 352/862, baseline = 0.5314, acc = 0.6549
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 84, n_samples = 309/862, baseline = 0.5642, acc = 0.6962
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 85, n_samples = 326/862, baseline = 0.5317, acc = 0.6586
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 86, n_samples = 321/862, baseline = 0.5601, acc = 0.6987
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 87, n_samples = 382/862, baseline = 0.5437, acc = 0.6646
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 88, n_samples = 369/862, baseline = 0.5761, acc = 0.6734
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 89, n_samples = 339/862, baseline = 0.5449, acc = 0.6711
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 90, n_samples = 341/862, baseline = 0.5605, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 91, n_samples = 371/862, baseline = 0.5743, acc = 0.6741
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 92, n_samples = 333/862, baseline = 0.5255, acc = 0.6767
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 93, n_samples = 313/862, baseline = 0.5301, acc = 0.6557
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 94, n_samples = 369/862, baseline = 0.5862, acc = 0.6694
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 95, n_samples = 345/862, baseline = 0.5435, acc = 0.6770
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 96, n_samples = 359/862, baseline = 0.5447, acc = 0.6501
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 97, n_samples = 344/862, baseline = 0.5425, acc = 0.6718
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 98, n_samples = 348/862, baseline = 0.5603, acc = 0.7101
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 99, n_samples = 344/862, baseline = 0.5483, acc = 0.6429
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 0, n_samples = 342/862, baseline = 0.5538, acc = 0.6904
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 1, n_samples = 352/862, baseline = 0.5412, acc = 0.7176
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 2, n_samples = 372/862, baseline = 0.5429, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 3, n_samples = 326/862, baseline = 0.5616, acc = 0.6660
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 4, n_samples = 355/862, baseline = 0.5483, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 5, n_samples = 331/862, baseline = 0.5669, acc = 0.6798
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 6, n_samples = 378/862, baseline = 0.5661, acc = 0.6756
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 7, n_samples = 334/862, baseline = 0.5455, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 8, n_samples = 357/862, baseline = 0.5644, acc = 0.6871
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 9, n_samples = 336/862, baseline = 0.5456, acc = 0.6920
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 10, n_samples = 353/862, baseline = 0.5383, acc = 0.6601
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 11, n_samples = 355/862, baseline = 0.5365, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 12, n_samples = 343/862, baseline = 0.5877, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 13, n_samples = 339/862, baseline = 0.5411, acc = 0.6577
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 14, n_samples = 333/862, baseline = 0.5444, acc = 0.6824
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 15, n_samples = 346/862, baseline = 0.5310, acc = 0.6589
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 16, n_samples = 360/862, baseline = 0.5618, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 17, n_samples = 313/862, baseline = 0.5792, acc = 0.6539
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 18, n_samples = 351/862, baseline = 0.5205, acc = 0.6654
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 19, n_samples = 346/862, baseline = 0.5562, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 20, n_samples = 338/862, baseline = 0.5363, acc = 0.6527
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 21, n_samples = 340/862, baseline = 0.5421, acc = 0.6839
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 22, n_samples = 344/862, baseline = 0.5405, acc = 0.6660
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 23, n_samples = 363/862, baseline = 0.5391, acc = 0.6954
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 24, n_samples = 349/862, baseline = 0.5575, acc = 0.7135
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 25, n_samples = 333/862, baseline = 0.5482, acc = 0.6541
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 26, n_samples = 344/862, baseline = 0.5714, acc = 0.6757
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 27, n_samples = 327/862, baseline = 0.5888, acc = 0.6860
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 28, n_samples = 352/862, baseline = 0.5431, acc = 0.6980
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 29, n_samples = 341/862, baseline = 0.5566, acc = 0.6795
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 30, n_samples = 377/862, baseline = 0.5505, acc = 0.7031
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 31, n_samples = 359/862, baseline = 0.5746, acc = 0.7137
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 32, n_samples = 346/862, baseline = 0.5310, acc = 0.6570
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 33, n_samples = 346/862, baseline = 0.5329, acc = 0.7112
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 34, n_samples = 329/862, baseline = 0.5366, acc = 0.6510
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 35, n_samples = 371/862, baseline = 0.5418, acc = 0.6823
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 36, n_samples = 355/862, baseline = 0.5444, acc = 0.6489
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 37, n_samples = 360/862, baseline = 0.5677, acc = 0.6713
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 38, n_samples = 362/862, baseline = 0.5340, acc = 0.6760
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 39, n_samples = 312/862, baseline = 0.5382, acc = 0.6545
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 40, n_samples = 371/862, baseline = 0.5132, acc = 0.6640
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 41, n_samples = 350/862, baseline = 0.5449, acc = 0.6641
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 42, n_samples = 332/862, baseline = 0.5623, acc = 0.6849
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 43, n_samples = 333/862, baseline = 0.5671, acc = 0.6786
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 44, n_samples = 341/862, baseline = 0.5317, acc = 0.6852
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 45, n_samples = 341/862, baseline = 0.5432, acc = 0.6622
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 46, n_samples = 340/862, baseline = 0.5556, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 47, n_samples = 340/862, baseline = 0.5536, acc = 0.6648
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 48, n_samples = 336/862, baseline = 0.5608, acc = 0.7129
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 49, n_samples = 369/862, baseline = 0.5538, acc = 0.6795
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 50, n_samples = 348/862, baseline = 0.5467, acc = 0.6829
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 51, n_samples = 352/862, baseline = 0.5608, acc = 0.6706
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 52, n_samples = 329/862, baseline = 0.5572, acc = 0.6942
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 53, n_samples = 347/862, baseline = 0.5417, acc = 0.6835
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 54, n_samples = 339/862, baseline = 0.5411, acc = 0.6501
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 55, n_samples = 328/862, baseline = 0.5524, acc = 0.6742
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 56, n_samples = 346/862, baseline = 0.5426, acc = 0.6880
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 57, n_samples = 346/862, baseline = 0.5484, acc = 0.6860
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 58, n_samples = 345/862, baseline = 0.5416, acc = 0.6925
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 59, n_samples = 311/862, baseline = 0.5517, acc = 0.6770
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 60, n_samples = 337/862, baseline = 0.5562, acc = 0.7105
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 61, n_samples = 361/862, baseline = 0.5409, acc = 0.6926
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 62, n_samples = 340/862, baseline = 0.5536, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 63, n_samples = 327/862, baseline = 0.5664, acc = 0.6879
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 64, n_samples = 358/862, baseline = 0.5575, acc = 0.6964
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 65, n_samples = 355/862, baseline = 0.5720, acc = 0.6923
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 66, n_samples = 340/862, baseline = 0.5632, acc = 0.7126
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 67, n_samples = 359/862, baseline = 0.5666, acc = 0.6640
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 68, n_samples = 335/862, baseline = 0.5541, acc = 0.6812
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 69, n_samples = 351/862, baseline = 0.5421, acc = 0.6751
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 70, n_samples = 361/862, baseline = 0.5589, acc = 0.6607
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 71, n_samples = 348/862, baseline = 0.5584, acc = 0.6907
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 72, n_samples = 336/862, baseline = 0.5494, acc = 0.6768
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 73, n_samples = 356/862, baseline = 0.5593, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 74, n_samples = 346/862, baseline = 0.5388, acc = 0.6841
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 75, n_samples = 354/862, baseline = 0.5492, acc = 0.6850
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 76, n_samples = 351/862, baseline = 0.5714, acc = 0.6869
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 77, n_samples = 333/862, baseline = 0.5425, acc = 0.6919
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 78, n_samples = 334/862, baseline = 0.5492, acc = 0.6780
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 79, n_samples = 327/862, baseline = 0.5757, acc = 0.6972
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 80, n_samples = 336/862, baseline = 0.5684, acc = 0.6920
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 81, n_samples = 351/862, baseline = 0.5734, acc = 0.6693
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 82, n_samples = 316/862, baseline = 0.5385, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 83, n_samples = 358/862, baseline = 0.5377, acc = 0.6944
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 84, n_samples = 337/862, baseline = 0.5581, acc = 0.6648
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 85, n_samples = 359/862, baseline = 0.5547, acc = 0.6561
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 86, n_samples = 334/862, baseline = 0.5322, acc = 0.6799
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 87, n_samples = 321/862, baseline = 0.5342, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 88, n_samples = 343/862, baseline = 0.5299, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 89, n_samples = 339/862, baseline = 0.5258, acc = 0.6750
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 90, n_samples = 343/862, baseline = 0.5356, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 91, n_samples = 335/862, baseline = 0.5750, acc = 0.6831
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 92, n_samples = 341/862, baseline = 0.5566, acc = 0.6929
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 93, n_samples = 360/862, baseline = 0.5518, acc = 0.6753
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 94, n_samples = 351/862, baseline = 0.5675, acc = 0.7025
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 95, n_samples = 329/862, baseline = 0.5629, acc = 0.6792
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 96, n_samples = 330/862, baseline = 0.5545, acc = 0.6936
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 97, n_samples = 353/862, baseline = 0.5246, acc = 0.6739
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 98, n_samples = 357/862, baseline = 0.5822, acc = 0.6614
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 99, n_samples = 363/862, baseline = 0.5531, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 0, n_samples = 368/862, baseline = 0.5445, acc = 0.6741
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 1, n_samples = 365/862, baseline = 0.5594, acc = 0.6821
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 2, n_samples = 368/862, baseline = 0.5506, acc = 0.6903
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 3, n_samples = 342/862, baseline = 0.5231, acc = 0.6769
-- ['Age', u'SM', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 4, n_samples = 348/862, baseline = 0.5506, acc = 0.6868
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 5, n_samples = 352/862, baseline = 0.5314, acc = 0.6824
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 6, n_samples = 324/862, baseline = 0.5539, acc = 0.6859
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 7, n_samples = 345/862, baseline = 0.5687, acc = 0.7060
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 8, n_samples = 325/862, baseline = 0.5400, acc = 0.6946
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 9, n_samples = 358/862, baseline = 0.5655, acc = 0.7044
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 10, n_samples = 369/862, baseline = 0.5598, acc = 0.7059
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 11, n_samples = 357/862, baseline = 0.5208, acc = 0.6812
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 12, n_samples = 318/862, baseline = 0.5570, acc = 0.6838
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 13, n_samples = 346/862, baseline = 0.5581, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 14, n_samples = 322/862, baseline = 0.5426, acc = 0.7000
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 15, n_samples = 339/862, baseline = 0.5468, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 16, n_samples = 375/862, baseline = 0.5708, acc = 0.6940
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 17, n_samples = 343/862, baseline = 0.5549, acc = 0.6994
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 18, n_samples = 354/862, baseline = 0.5394, acc = 0.6988
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 19, n_samples = 371/862, baseline = 0.5703, acc = 0.7067
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 20, n_samples = 345/862, baseline = 0.5493, acc = 0.6634
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 21, n_samples = 335/862, baseline = 0.5370, acc = 0.6641
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 22, n_samples = 351/862, baseline = 0.5656, acc = 0.6771
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 23, n_samples = 325/862, baseline = 0.5456, acc = 0.6760
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 24, n_samples = 337/862, baseline = 0.5486, acc = 0.7086
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 25, n_samples = 342/862, baseline = 0.5385, acc = 0.6750
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 26, n_samples = 356/862, baseline = 0.5336, acc = 0.6621
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 27, n_samples = 346/862, baseline = 0.5484, acc = 0.6880
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 28, n_samples = 356/862, baseline = 0.5395, acc = 0.6917
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 29, n_samples = 353/862, baseline = 0.5501, acc = 0.6778
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 30, n_samples = 367/862, baseline = 0.5616, acc = 0.6646
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 31, n_samples = 355/862, baseline = 0.5542, acc = 0.6943
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 32, n_samples = 354/862, baseline = 0.5413, acc = 0.6850
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 33, n_samples = 325/862, baseline = 0.5438, acc = 0.6872
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 34, n_samples = 358/862, baseline = 0.5754, acc = 0.7063
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 35, n_samples = 356/862, baseline = 0.5375, acc = 0.6937
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 36, n_samples = 346/862, baseline = 0.5504, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 37, n_samples = 361/862, baseline = 0.5589, acc = 0.6647
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 38, n_samples = 357/862, baseline = 0.5564, acc = 0.6535
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 39, n_samples = 345/862, baseline = 0.5397, acc = 0.6615
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 40, n_samples = 343/862, baseline = 0.5414, acc = 0.6744
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 41, n_samples = 324/862, baseline = 0.5706, acc = 0.7045
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 42, n_samples = 326/862, baseline = 0.5280, acc = 0.6698
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 43, n_samples = 328/862, baseline = 0.5581, acc = 0.6723
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 44, n_samples = 341/862, baseline = 0.5547, acc = 0.7083
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 45, n_samples = 363/862, baseline = 0.5311, acc = 0.6493
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 46, n_samples = 356/862, baseline = 0.5395, acc = 0.6858
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots', 'Early_RIC']
LogisticRegression: C = 0.0800, intercept=False iter = 47, n_samples = 363/862, baseline = 0.5511, acc = 0.7034
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 48, n_samples = 353/862, baseline = 0.5639, acc = 0.7053
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 49, n_samples = 340/862, baseline = 0.5192, acc = 0.6552
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 50, n_samples = 353/862, baseline = 0.5422, acc = 0.6778
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 51, n_samples = 338/862, baseline = 0.5630, acc = 0.6985
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 52, n_samples = 328/862, baseline = 0.5300, acc = 0.6517
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 53, n_samples = 349/862, baseline = 0.5595, acc = 0.7173
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 54, n_samples = 362/862, baseline = 0.5420, acc = 0.6680
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 55, n_samples = 344/862, baseline = 0.5734, acc = 0.6834
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 56, n_samples = 350/862, baseline = 0.5449, acc = 0.6973
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 57, n_samples = 329/862, baseline = 0.5553, acc = 0.6717
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 58, n_samples = 335/862, baseline = 0.5446, acc = 0.6926
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 59, n_samples = 335/862, baseline = 0.5617, acc = 0.6831
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 60, n_samples = 319/862, baseline = 0.5764, acc = 0.6777
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 61, n_samples = 344/862, baseline = 0.5502, acc = 0.6718
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 62, n_samples = 341/862, baseline = 0.5470, acc = 0.6795
-- ['Age', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 63, n_samples = 330/862, baseline = 0.5357, acc = 0.6805
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 64, n_samples = 332/862, baseline = 0.5377, acc = 0.6528
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 65, n_samples = 343/862, baseline = 0.5434, acc = 0.7052
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 66, n_samples = 344/862, baseline = 0.5502, acc = 0.6853
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 67, n_samples = 353/862, baseline = 0.5619, acc = 0.7014
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 68, n_samples = 323/862, baseline = 0.5603, acc = 0.6883
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 69, n_samples = 367/862, baseline = 0.5535, acc = 0.6626
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 70, n_samples = 351/862, baseline = 0.5597, acc = 0.6751
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 71, n_samples = 341/862, baseline = 0.5298, acc = 0.6775
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 72, n_samples = 342/862, baseline = 0.5269, acc = 0.6615
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 73, n_samples = 354/862, baseline = 0.5807, acc = 0.6949
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 74, n_samples = 350/862, baseline = 0.5449, acc = 0.6816
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 75, n_samples = 348/862, baseline = 0.5409, acc = 0.6848
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 76, n_samples = 337/862, baseline = 0.5581, acc = 0.6876
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 77, n_samples = 350/862, baseline = 0.5605, acc = 0.6680
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 78, n_samples = 347/862, baseline = 0.5476, acc = 0.6990
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 79, n_samples = 341/862, baseline = 0.5278, acc = 0.6718
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 80, n_samples = 366/862, baseline = 0.5504, acc = 0.6815
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 81, n_samples = 336/862, baseline = 0.5513, acc = 0.6863
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 82, n_samples = 341/862, baseline = 0.5566, acc = 0.6987
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 83, n_samples = 350/862, baseline = 0.5469, acc = 0.6621
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 84, n_samples = 372/862, baseline = 0.5367, acc = 0.6755
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 85, n_samples = 327/862, baseline = 0.5551, acc = 0.6804
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 86, n_samples = 367/862, baseline = 0.5455, acc = 0.6949
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 87, n_samples = 344/862, baseline = 0.5598, acc = 0.6950
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 88, n_samples = 338/862, baseline = 0.5553, acc = 0.6927
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 89, n_samples = 347/862, baseline = 0.5534, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 90, n_samples = 346/862, baseline = 0.5620, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 91, n_samples = 338/862, baseline = 0.5515, acc = 0.6851
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 92, n_samples = 343/862, baseline = 0.5626, acc = 0.6782
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 93, n_samples = 347/862, baseline = 0.5456, acc = 0.6816
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 94, n_samples = 334/862, baseline = 0.5511, acc = 0.6894
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 95, n_samples = 350/862, baseline = 0.5508, acc = 0.6895
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 96, n_samples = 379/862, baseline = 0.5714, acc = 0.6708
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 97, n_samples = 346/862, baseline = 0.5562, acc = 0.6977
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 98, n_samples = 335/862, baseline = 0.5408, acc = 0.7097
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 99, n_samples = 367/862, baseline = 0.5434, acc = 0.6929
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0200, intercept=True iter = 0, n_samples = 350/862, baseline = 0.5352, acc = 0.6777
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 1, n_samples = 352/862, baseline = 0.5314, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 2, n_samples = 331/862, baseline = 0.5273, acc = 0.6591
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 3, n_samples = 363/862, baseline = 0.5551, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 4, n_samples = 354/862, baseline = 0.5472, acc = 0.6634
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 5, n_samples = 353/862, baseline = 0.5481, acc = 0.6817
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 6, n_samples = 356/862, baseline = 0.5830, acc = 0.6838
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 7, n_samples = 360/862, baseline = 0.5359, acc = 0.6992
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 8, n_samples = 336/862, baseline = 0.5856, acc = 0.6692
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 9, n_samples = 330/862, baseline = 0.5602, acc = 0.6654
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 10, n_samples = 338/862, baseline = 0.5496, acc = 0.6794
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 11, n_samples = 340/862, baseline = 0.5632, acc = 0.6686
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 12, n_samples = 312/862, baseline = 0.5491, acc = 0.6745
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 13, n_samples = 351/862, baseline = 0.5460, acc = 0.6575
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 14, n_samples = 356/862, baseline = 0.5415, acc = 0.6739
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 15, n_samples = 356/862, baseline = 0.5395, acc = 0.6976
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 16, n_samples = 328/862, baseline = 0.5674, acc = 0.6891
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 17, n_samples = 314/862, baseline = 0.5328, acc = 0.6697
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 18, n_samples = 337/862, baseline = 0.5600, acc = 0.6743
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 19, n_samples = 332/862, baseline = 0.5358, acc = 0.6642
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 20, n_samples = 362/862, baseline = 0.5580, acc = 0.6700
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 21, n_samples = 356/862, baseline = 0.5455, acc = 0.6838
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 22, n_samples = 339/862, baseline = 0.5583, acc = 0.6941
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 23, n_samples = 342/862, baseline = 0.5462, acc = 0.6712
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 24, n_samples = 340/862, baseline = 0.5632, acc = 0.6648
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 25, n_samples = 343/862, baseline = 0.5511, acc = 0.6686
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 26, n_samples = 348/862, baseline = 0.5331, acc = 0.6732
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 27, n_samples = 351/862, baseline = 0.5597, acc = 0.6888
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 28, n_samples = 343/862, baseline = 0.5414, acc = 0.6879
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 29, n_samples = 342/862, baseline = 0.5500, acc = 0.6865
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 30, n_samples = 369/862, baseline = 0.5477, acc = 0.6856
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 31, n_samples = 330/862, baseline = 0.5564, acc = 0.6598
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 32, n_samples = 341/862, baseline = 0.5432, acc = 0.7006
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 33, n_samples = 347/862, baseline = 0.5456, acc = 0.6777
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 34, n_samples = 336/862, baseline = 0.5266, acc = 0.6692
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 35, n_samples = 337/862, baseline = 0.5295, acc = 0.6533
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 36, n_samples = 335/862, baseline = 0.5370, acc = 0.6584
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 37, n_samples = 341/862, baseline = 0.5317, acc = 0.6564
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 38, n_samples = 334/862, baseline = 0.5360, acc = 0.6705
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 39, n_samples = 331/862, baseline = 0.5499, acc = 0.6817
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 40, n_samples = 362/862, baseline = 0.5220, acc = 0.6680
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 41, n_samples = 323/862, baseline = 0.5677, acc = 0.6809
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 42, n_samples = 346/862, baseline = 0.5426, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 43, n_samples = 330/862, baseline = 0.5658, acc = 0.6767
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 44, n_samples = 332/862, baseline = 0.5547, acc = 0.6868
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 45, n_samples = 354/862, baseline = 0.5551, acc = 0.6713
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 46, n_samples = 357/862, baseline = 0.5584, acc = 0.6634
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 47, n_samples = 375/862, baseline = 0.5544, acc = 0.6591
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 48, n_samples = 374/862, baseline = 0.5717, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 49, n_samples = 374/862, baseline = 0.5963, acc = 0.6988
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 50, n_samples = 296/862, baseline = 0.5601, acc = 0.6890
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 51, n_samples = 332/862, baseline = 0.5547, acc = 0.6698
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 52, n_samples = 358/862, baseline = 0.5694, acc = 0.6587
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 53, n_samples = 331/862, baseline = 0.5706, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 54, n_samples = 324/862, baseline = 0.5335, acc = 0.6654
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 55, n_samples = 350/862, baseline = 0.5605, acc = 0.6836
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 56, n_samples = 337/862, baseline = 0.5848, acc = 0.6876
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 57, n_samples = 329/862, baseline = 0.5366, acc = 0.6754
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 58, n_samples = 358/862, baseline = 0.5397, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 59, n_samples = 344/862, baseline = 0.5483, acc = 0.6834
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 60, n_samples = 334/862, baseline = 0.5587, acc = 0.7064
-- [u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 61, n_samples = 359/862, baseline = 0.5646, acc = 0.6759
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 62, n_samples = 335/862, baseline = 0.5465, acc = 0.6622
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 63, n_samples = 339/862, baseline = 0.5870, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 64, n_samples = 371/862, baseline = 0.5682, acc = 0.7128
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 65, n_samples = 356/862, baseline = 0.5613, acc = 0.6700
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 66, n_samples = 334/862, baseline = 0.5530, acc = 0.6799
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 67, n_samples = 329/862, baseline = 0.5666, acc = 0.6773
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 68, n_samples = 335/862, baseline = 0.5712, acc = 0.6964
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 69, n_samples = 335/862, baseline = 0.5825, acc = 0.6717
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 70, n_samples = 359/862, baseline = 0.5527, acc = 0.6700
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 71, n_samples = 311/862, baseline = 0.5699, acc = 0.6715
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 72, n_samples = 360/862, baseline = 0.5498, acc = 0.7131
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 73, n_samples = 332/862, baseline = 0.5830, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 74, n_samples = 347/862, baseline = 0.5476, acc = 0.6602
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 75, n_samples = 381/862, baseline = 0.5551, acc = 0.6507
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 76, n_samples = 340/862, baseline = 0.5613, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 77, n_samples = 339/862, baseline = 0.5583, acc = 0.7055
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 78, n_samples = 361/862, baseline = 0.5509, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 79, n_samples = 327/862, baseline = 0.5402, acc = 0.6729
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 80, n_samples = 362/862, baseline = 0.5620, acc = 0.7100
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 81, n_samples = 335/862, baseline = 0.5541, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 82, n_samples = 373/862, baseline = 0.5481, acc = 0.6605
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 83, n_samples = 328/862, baseline = 0.5618, acc = 0.6816
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 84, n_samples = 343/862, baseline = 0.5202, acc = 0.6513
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 85, n_samples = 347/862, baseline = 0.5650, acc = 0.7068
-- [u'Max D', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 86, n_samples = 335/862, baseline = 0.5598, acc = 0.6717
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 87, n_samples = 325/862, baseline = 0.5624, acc = 0.6480
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 88, n_samples = 352/862, baseline = 0.5490, acc = 0.6706
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 89, n_samples = 358/862, baseline = 0.5456, acc = 0.6825
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 90, n_samples = 345/862, baseline = 0.5532, acc = 0.7060
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 91, n_samples = 334/862, baseline = 0.5473, acc = 0.6818
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 92, n_samples = 327/862, baseline = 0.5402, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 93, n_samples = 342/862, baseline = 0.5519, acc = 0.6712
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 94, n_samples = 355/862, baseline = 0.5937, acc = 0.6864
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 95, n_samples = 333/862, baseline = 0.5520, acc = 0.6767
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 96, n_samples = 354/862, baseline = 0.5177, acc = 0.6516
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 97, n_samples = 349/862, baseline = 0.5263, acc = 0.6589
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 98, n_samples = 352/862, baseline = 0.5627, acc = 0.6725
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 99, n_samples = 338/862, baseline = 0.5515, acc = 0.6775
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 0, n_samples = 353/862, baseline = 0.5442, acc = 0.6876
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 1, n_samples = 349/862, baseline = 0.5497, acc = 0.6803
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 2, n_samples = 339/862, baseline = 0.5698, acc = 0.6864
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 3, n_samples = 368/862, baseline = 0.5324, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 4, n_samples = 343/862, baseline = 0.5665, acc = 0.6859
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 5, n_samples = 367/862, baseline = 0.5556, acc = 0.7071
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 6, n_samples = 334/862, baseline = 0.5663, acc = 0.6875
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 7, n_samples = 347/862, baseline = 0.5398, acc = 0.6913
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 8, n_samples = 337/862, baseline = 0.5181, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 9, n_samples = 359/862, baseline = 0.5726, acc = 0.6859
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 10, n_samples = 345/862, baseline = 0.5687, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 11, n_samples = 347/862, baseline = 0.5456, acc = 0.6660
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 12, n_samples = 355/862, baseline = 0.5562, acc = 0.6884
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 13, n_samples = 358/862, baseline = 0.5417, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 14, n_samples = 362/862, baseline = 0.5360, acc = 0.6640
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 15, n_samples = 334/862, baseline = 0.5436, acc = 0.6837
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 16, n_samples = 333/862, baseline = 0.5709, acc = 0.6919
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 17, n_samples = 346/862, baseline = 0.5252, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 18, n_samples = 343/862, baseline = 0.5453, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 19, n_samples = 350/862, baseline = 0.5488, acc = 0.6875
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 20, n_samples = 362/862, baseline = 0.5580, acc = 0.6980
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 21, n_samples = 340/862, baseline = 0.5517, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 22, n_samples = 344/862, baseline = 0.5579, acc = 0.7066
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 23, n_samples = 355/862, baseline = 0.5444, acc = 0.6963
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 24, n_samples = 358/862, baseline = 0.5694, acc = 0.6925
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 25, n_samples = 340/862, baseline = 0.5594, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 26, n_samples = 341/862, baseline = 0.5566, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 27, n_samples = 354/862, baseline = 0.5610, acc = 0.6752
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 28, n_samples = 335/862, baseline = 0.5484, acc = 0.6717
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 29, n_samples = 353/862, baseline = 0.5226, acc = 0.6601
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 30, n_samples = 342/862, baseline = 0.5365, acc = 0.6962
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 31, n_samples = 375/862, baseline = 0.5462, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 32, n_samples = 367/862, baseline = 0.5576, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 33, n_samples = 339/862, baseline = 0.5507, acc = 0.6558
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 34, n_samples = 330/862, baseline = 0.5508, acc = 0.6786
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 35, n_samples = 349/862, baseline = 0.5419, acc = 0.6628
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 36, n_samples = 341/862, baseline = 0.5643, acc = 0.6718
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 37, n_samples = 345/862, baseline = 0.5513, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 38, n_samples = 334/862, baseline = 0.5455, acc = 0.6723
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 39, n_samples = 331/862, baseline = 0.5556, acc = 0.6874
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 40, n_samples = 364/862, baseline = 0.5241, acc = 0.6787
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 41, n_samples = 345/862, baseline = 0.5648, acc = 0.6615
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 42, n_samples = 350/862, baseline = 0.5508, acc = 0.6953
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 43, n_samples = 363/862, baseline = 0.5591, acc = 0.6794
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 44, n_samples = 338/862, baseline = 0.5401, acc = 0.6851
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 45, n_samples = 330/862, baseline = 0.5432, acc = 0.6635
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 46, n_samples = 352/862, baseline = 0.5647, acc = 0.6980
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 47, n_samples = 305/862, baseline = 0.5619, acc = 0.6912
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 48, n_samples = 360/862, baseline = 0.5319, acc = 0.6773
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 49, n_samples = 316/862, baseline = 0.5641, acc = 0.6740
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 50, n_samples = 359/862, baseline = 0.5706, acc = 0.6918
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 51, n_samples = 342/862, baseline = 0.5327, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 52, n_samples = 332/862, baseline = 0.5340, acc = 0.6792
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 53, n_samples = 340/862, baseline = 0.5460, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 54, n_samples = 338/862, baseline = 0.5611, acc = 0.7004
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 55, n_samples = 355/862, baseline = 0.5365, acc = 0.6785
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 56, n_samples = 344/862, baseline = 0.5695, acc = 0.6931
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 57, n_samples = 332/862, baseline = 0.5415, acc = 0.6604
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 58, n_samples = 363/862, baseline = 0.5451, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 59, n_samples = 322/862, baseline = 0.5426, acc = 0.6833
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 60, n_samples = 366/862, baseline = 0.5625, acc = 0.6754
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 61, n_samples = 353/862, baseline = 0.5560, acc = 0.7033
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 62, n_samples = 342/862, baseline = 0.5577, acc = 0.7173
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 63, n_samples = 341/862, baseline = 0.5393, acc = 0.6737
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 64, n_samples = 329/862, baseline = 0.5685, acc = 0.6961
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 65, n_samples = 348/862, baseline = 0.5545, acc = 0.6887
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 66, n_samples = 359/862, baseline = 0.5726, acc = 0.7058
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 67, n_samples = 318/862, baseline = 0.5533, acc = 0.6562
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 68, n_samples = 385/862, baseline = 0.5744, acc = 0.7044
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 69, n_samples = 330/862, baseline = 0.5432, acc = 0.6729
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 70, n_samples = 337/862, baseline = 0.5562, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 71, n_samples = 318/862, baseline = 0.5625, acc = 0.6599
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 72, n_samples = 340/862, baseline = 0.5383, acc = 0.6782
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 73, n_samples = 362/862, baseline = 0.5700, acc = 0.6620
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 74, n_samples = 363/862, baseline = 0.5551, acc = 0.6273
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 75, n_samples = 356/862, baseline = 0.5455, acc = 0.6917
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 76, n_samples = 337/862, baseline = 0.5486, acc = 0.6933
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 77, n_samples = 354/862, baseline = 0.5551, acc = 0.6870
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 78, n_samples = 351/862, baseline = 0.5616, acc = 0.6693
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 79, n_samples = 333/862, baseline = 0.5595, acc = 0.7013
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 80, n_samples = 323/862, baseline = 0.5492, acc = 0.6531
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 81, n_samples = 332/862, baseline = 0.5377, acc = 0.6811
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 82, n_samples = 337/862, baseline = 0.5619, acc = 0.6800
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 83, n_samples = 355/862, baseline = 0.5523, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 84, n_samples = 352/862, baseline = 0.5922, acc = 0.6882
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 85, n_samples = 332/862, baseline = 0.5472, acc = 0.6868
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 86, n_samples = 339/862, baseline = 0.5411, acc = 0.6845
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 87, n_samples = 331/862, baseline = 0.5405, acc = 0.6949
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 88, n_samples = 338/862, baseline = 0.5305, acc = 0.7061
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 89, n_samples = 330/862, baseline = 0.5526, acc = 0.6654
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 90, n_samples = 342/862, baseline = 0.5750, acc = 0.6769
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 91, n_samples = 364/862, baseline = 0.5382, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 92, n_samples = 344/862, baseline = 0.5579, acc = 0.6911
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 93, n_samples = 329/862, baseline = 0.5629, acc = 0.6961
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 94, n_samples = 338/862, baseline = 0.5229, acc = 0.6660
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 95, n_samples = 326/862, baseline = 0.5448, acc = 0.6847
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 96, n_samples = 356/862, baseline = 0.5553, acc = 0.6877
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 97, n_samples = 346/862, baseline = 0.5446, acc = 0.6570
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 98, n_samples = 360/862, baseline = 0.5518, acc = 0.7171
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 99, n_samples = 313/862, baseline = 0.5574, acc = 0.6648
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 0, n_samples = 324/862, baseline = 0.5520, acc = 0.6729
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 1, n_samples = 324/862, baseline = 0.5595, acc = 0.6840
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 2, n_samples = 330/862, baseline = 0.5470, acc = 0.6485
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 3, n_samples = 345/862, baseline = 0.5532, acc = 0.6867
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 4, n_samples = 332/862, baseline = 0.5396, acc = 0.6491
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 5, n_samples = 347/862, baseline = 0.5612, acc = 0.7165
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 6, n_samples = 356/862, baseline = 0.5593, acc = 0.6482
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 7, n_samples = 371/862, baseline = 0.5479, acc = 0.6640
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 8, n_samples = 350/862, baseline = 0.5625, acc = 0.6523
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 9, n_samples = 348/862, baseline = 0.5486, acc = 0.6965
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 10, n_samples = 356/862, baseline = 0.5534, acc = 0.7055
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 11, n_samples = 378/862, baseline = 0.5599, acc = 0.6880
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 12, n_samples = 337/862, baseline = 0.5448, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 13, n_samples = 350/862, baseline = 0.5840, acc = 0.6934
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 14, n_samples = 312/862, baseline = 0.5400, acc = 0.6836
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 15, n_samples = 354/862, baseline = 0.5453, acc = 0.7264
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 16, n_samples = 369/862, baseline = 0.5740, acc = 0.6795
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 17, n_samples = 331/862, baseline = 0.5424, acc = 0.6874
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 18, n_samples = 343/862, baseline = 0.5491, acc = 0.6821
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 19, n_samples = 360/862, baseline = 0.5578, acc = 0.7072
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 20, n_samples = 368/862, baseline = 0.5506, acc = 0.7004
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 21, n_samples = 336/862, baseline = 0.5494, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 22, n_samples = 339/862, baseline = 0.5468, acc = 0.6845
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 23, n_samples = 378/862, baseline = 0.5599, acc = 0.7025
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 24, n_samples = 364/862, baseline = 0.5643, acc = 0.6867
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 25, n_samples = 332/862, baseline = 0.5434, acc = 0.6830
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 26, n_samples = 346/862, baseline = 0.5698, acc = 0.7132
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 27, n_samples = 377/862, baseline = 0.5505, acc = 0.6866
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 28, n_samples = 339/862, baseline = 0.5335, acc = 0.6673
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 29, n_samples = 357/862, baseline = 0.5604, acc = 0.6931
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 30, n_samples = 341/862, baseline = 0.5528, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 31, n_samples = 347/862, baseline = 0.5845, acc = 0.6757
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 32, n_samples = 370/862, baseline = 0.5467, acc = 0.6870
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 33, n_samples = 344/862, baseline = 0.5502, acc = 0.6853
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 34, n_samples = 342/862, baseline = 0.5673, acc = 0.6750
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 35, n_samples = 349/862, baseline = 0.5497, acc = 0.6881
-- ['Age', u'SM', u'Max D', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 36, n_samples = 352/862, baseline = 0.5608, acc = 0.6824
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 37, n_samples = 324/862, baseline = 0.5595, acc = 0.6784
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 38, n_samples = 340/862, baseline = 0.5556, acc = 0.6743
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 39, n_samples = 354/862, baseline = 0.5236, acc = 0.6732
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 40, n_samples = 350/862, baseline = 0.5391, acc = 0.6641
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 41, n_samples = 350/862, baseline = 0.5156, acc = 0.6680
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 42, n_samples = 340/862, baseline = 0.5556, acc = 0.6513
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 43, n_samples = 349/862, baseline = 0.5692, acc = 0.6901
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 44, n_samples = 335/862, baseline = 0.5484, acc = 0.7135
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 45, n_samples = 355/862, baseline = 0.5602, acc = 0.6726
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 46, n_samples = 337/862, baseline = 0.5600, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 47, n_samples = 355/862, baseline = 0.5464, acc = 0.6923
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 48, n_samples = 334/862, baseline = 0.5720, acc = 0.7027
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 49, n_samples = 357/862, baseline = 0.5366, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 50, n_samples = 348/862, baseline = 0.5564, acc = 0.6518
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 51, n_samples = 338/862, baseline = 0.5324, acc = 0.6851
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 52, n_samples = 329/862, baseline = 0.5553, acc = 0.7129
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 53, n_samples = 342/862, baseline = 0.5442, acc = 0.6808
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 54, n_samples = 371/862, baseline = 0.5580, acc = 0.6802
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 55, n_samples = 347/862, baseline = 0.5282, acc = 0.6718
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 56, n_samples = 355/862, baseline = 0.5503, acc = 0.6884
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 57, n_samples = 343/862, baseline = 0.5356, acc = 0.6936
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 58, n_samples = 353/862, baseline = 0.5442, acc = 0.6660
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 59, n_samples = 352/862, baseline = 0.5549, acc = 0.6824
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 60, n_samples = 348/862, baseline = 0.5389, acc = 0.6790
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 61, n_samples = 338/862, baseline = 0.5515, acc = 0.6985
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 62, n_samples = 361/862, baseline = 0.5689, acc = 0.6886
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 63, n_samples = 366/862, baseline = 0.5383, acc = 0.6915
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 64, n_samples = 337/862, baseline = 0.5448, acc = 0.6762
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 65, n_samples = 347/862, baseline = 0.5631, acc = 0.6835
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 66, n_samples = 381/862, baseline = 0.5655, acc = 0.7027
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 67, n_samples = 371/862, baseline = 0.5519, acc = 0.6762
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 68, n_samples = 318/862, baseline = 0.5533, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 69, n_samples = 345/862, baseline = 0.5532, acc = 0.6654
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 70, n_samples = 333/862, baseline = 0.5312, acc = 0.6578
-- ['Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 71, n_samples = 335/862, baseline = 0.5408, acc = 0.6565
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 72, n_samples = 331/862, baseline = 0.5556, acc = 0.6855
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 73, n_samples = 339/862, baseline = 0.5315, acc = 0.6979
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 74, n_samples = 349/862, baseline = 0.5341, acc = 0.6725
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 75, n_samples = 348/862, baseline = 0.5389, acc = 0.6790
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 76, n_samples = 362/862, baseline = 0.5440, acc = 0.6780
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 77, n_samples = 326/862, baseline = 0.5560, acc = 0.7052
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 78, n_samples = 314/862, baseline = 0.5474, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 79, n_samples = 347/862, baseline = 0.5340, acc = 0.6971
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 80, n_samples = 336/862, baseline = 0.5456, acc = 0.6825
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 81, n_samples = 353/862, baseline = 0.5540, acc = 0.6758
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 82, n_samples = 327/862, baseline = 0.5626, acc = 0.6561
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 83, n_samples = 369/862, baseline = 0.5456, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 84, n_samples = 346/862, baseline = 0.5620, acc = 0.6977
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 85, n_samples = 340/862, baseline = 0.5153, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 86, n_samples = 353/862, baseline = 0.5599, acc = 0.6935
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 87, n_samples = 351/862, baseline = 0.5577, acc = 0.7006
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 88, n_samples = 377/862, baseline = 0.5629, acc = 0.6825
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 89, n_samples = 355/862, baseline = 0.5621, acc = 0.6765
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 90, n_samples = 356/862, baseline = 0.5178, acc = 0.6621
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 91, n_samples = 342/862, baseline = 0.5365, acc = 0.6673
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 92, n_samples = 337/862, baseline = 0.5390, acc = 0.6838
-- [u'Max D', u'Embo', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 93, n_samples = 326/862, baseline = 0.5578, acc = 0.7015
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 94, n_samples = 314/862, baseline = 0.5438, acc = 0.6916
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 95, n_samples = 370/862, baseline = 0.5386, acc = 0.6768
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 96, n_samples = 332/862, baseline = 0.5642, acc = 0.6868
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 97, n_samples = 354/862, baseline = 0.5630, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 98, n_samples = 336/862, baseline = 0.5589, acc = 0.6749
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 99, n_samples = 320/862, baseline = 0.5461, acc = 0.6679
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0200, intercept=False iter = 0, n_samples = 263/862, baseline = 0.5509, acc = 0.6878
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 1, n_samples = 276/862, baseline = 0.5495, acc = 0.6724
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 2, n_samples = 267/862, baseline = 0.5496, acc = 0.6739
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 3, n_samples = 240/862, baseline = 0.5643, acc = 0.6961
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 4, n_samples = 253/862, baseline = 0.5501, acc = 0.6897
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 5, n_samples = 267/862, baseline = 0.5546, acc = 0.6588
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 6, n_samples = 263/862, baseline = 0.5576, acc = 0.6578
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 7, n_samples = 269/862, baseline = 0.5413, acc = 0.6712
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 8, n_samples = 261/862, baseline = 0.5458, acc = 0.6606
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 9, n_samples = 249/862, baseline = 0.5334, acc = 0.6721
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 10, n_samples = 260/862, baseline = 0.5498, acc = 0.6860
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 11, n_samples = 261/862, baseline = 0.5541, acc = 0.6589
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 12, n_samples = 249/862, baseline = 0.5302, acc = 0.6737
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 13, n_samples = 241/862, baseline = 0.5443, acc = 0.6763
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 14, n_samples = 281/862, baseline = 0.5525, acc = 0.6695
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 15, n_samples = 251/862, baseline = 0.5532, acc = 0.6939
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 16, n_samples = 281/862, baseline = 0.5525, acc = 0.6678
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 17, n_samples = 262/862, baseline = 0.5550, acc = 0.6917
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 18, n_samples = 279/862, baseline = 0.5489, acc = 0.6947
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 19, n_samples = 255/862, baseline = 0.5470, acc = 0.6722
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 20, n_samples = 240/862, baseline = 0.5370, acc = 0.6592
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 21, n_samples = 263/862, baseline = 0.5409, acc = 0.6628
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 22, n_samples = 270/862, baseline = 0.5253, acc = 0.6537
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 23, n_samples = 260/862, baseline = 0.5515, acc = 0.6860
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 24, n_samples = 284/862, baseline = 0.5675, acc = 0.6678
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 25, n_samples = 265/862, baseline = 0.5645, acc = 0.6717
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 26, n_samples = 272/862, baseline = 0.5542, acc = 0.6983
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 27, n_samples = 243/862, baseline = 0.5444, acc = 0.6753
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 28, n_samples = 259/862, baseline = 0.5439, acc = 0.6766
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 29, n_samples = 293/862, baseline = 0.5641, acc = 0.6766
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 30, n_samples = 245/862, baseline = 0.5511, acc = 0.6467
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 31, n_samples = 252/862, baseline = 0.5525, acc = 0.6918
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 32, n_samples = 253/862, baseline = 0.5402, acc = 0.6880
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 33, n_samples = 254/862, baseline = 0.5592, acc = 0.6678
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 34, n_samples = 269/862, baseline = 0.5599, acc = 0.6914
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 35, n_samples = 257/862, baseline = 0.5587, acc = 0.6793
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 36, n_samples = 270/862, baseline = 0.5439, acc = 0.6824
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 37, n_samples = 260/862, baseline = 0.5532, acc = 0.6927
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 38, n_samples = 258/862, baseline = 0.5281, acc = 0.6705
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 39, n_samples = 249/862, baseline = 0.5563, acc = 0.6803
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 40, n_samples = 262/862, baseline = 0.5533, acc = 0.6900
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 41, n_samples = 252/862, baseline = 0.5590, acc = 0.7066
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 42, n_samples = 262/862, baseline = 0.5317, acc = 0.6800
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 43, n_samples = 235/862, baseline = 0.5455, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 44, n_samples = 267/862, baseline = 0.5546, acc = 0.6824
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 45, n_samples = 259/862, baseline = 0.5672, acc = 0.6733
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 46, n_samples = 242/862, baseline = 0.5387, acc = 0.6774
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 47, n_samples = 268/862, baseline = 0.5842, acc = 0.6869
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 48, n_samples = 256/862, baseline = 0.5627, acc = 0.6584
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 49, n_samples = 261/862, baseline = 0.5541, acc = 0.6822
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 50, n_samples = 247/862, baseline = 0.5545, acc = 0.6780
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 51, n_samples = 305/862, baseline = 0.5601, acc = 0.6804
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 52, n_samples = 260/862, baseline = 0.5598, acc = 0.6595
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 53, n_samples = 249/862, baseline = 0.5465, acc = 0.6493
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 54, n_samples = 257/862, baseline = 0.5554, acc = 0.6727
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 55, n_samples = 256/862, baseline = 0.5495, acc = 0.6815
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 56, n_samples = 260/862, baseline = 0.5382, acc = 0.6761
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 57, n_samples = 267/862, baseline = 0.5647, acc = 0.6908
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 58, n_samples = 257/862, baseline = 0.5570, acc = 0.6876
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 59, n_samples = 234/862, baseline = 0.5382, acc = 0.6640
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 60, n_samples = 272/862, baseline = 0.5576, acc = 0.6847
-- [u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 61, n_samples = 251/862, baseline = 0.5516, acc = 0.6710
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 62, n_samples = 266/862, baseline = 0.5570, acc = 0.6913
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 63, n_samples = 283/862, baseline = 0.5665, acc = 0.6874
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 64, n_samples = 250/862, baseline = 0.5605, acc = 0.6634
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 65, n_samples = 257/862, baseline = 0.5570, acc = 0.6826
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 66, n_samples = 258/862, baseline = 0.5430, acc = 0.6474
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 67, n_samples = 279/862, baseline = 0.5678, acc = 0.6861
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 68, n_samples = 240/862, baseline = 0.5514, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 69, n_samples = 253/862, baseline = 0.5484, acc = 0.6831
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 70, n_samples = 236/862, baseline = 0.5479, acc = 0.6677
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 71, n_samples = 267/862, baseline = 0.5294, acc = 0.6756
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 72, n_samples = 246/862, baseline = 0.5747, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 73, n_samples = 250/862, baseline = 0.5408, acc = 0.6797
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 74, n_samples = 246/862, baseline = 0.5373, acc = 0.6623
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 75, n_samples = 229/862, baseline = 0.5513, acc = 0.6682
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 76, n_samples = 242/862, baseline = 0.5435, acc = 0.6677
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 77, n_samples = 254/862, baseline = 0.5329, acc = 0.6727
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 78, n_samples = 267/862, baseline = 0.5546, acc = 0.6689
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 79, n_samples = 245/862, baseline = 0.5446, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 80, n_samples = 272/862, baseline = 0.5678, acc = 0.6932
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 81, n_samples = 264/862, baseline = 0.5435, acc = 0.6890
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 82, n_samples = 269/862, baseline = 0.5413, acc = 0.6847
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 83, n_samples = 251/862, baseline = 0.5548, acc = 0.6825
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 84, n_samples = 235/862, baseline = 0.5486, acc = 0.6635
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 85, n_samples = 266/862, baseline = 0.5336, acc = 0.6846
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 86, n_samples = 270/862, baseline = 0.5659, acc = 0.7027
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 87, n_samples = 244/862, baseline = 0.5437, acc = 0.7039
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 88, n_samples = 253/862, baseline = 0.5550, acc = 0.6716
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 89, n_samples = 244/862, baseline = 0.5566, acc = 0.6764
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 90, n_samples = 285/862, baseline = 0.5529, acc = 0.6794
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 91, n_samples = 256/862, baseline = 0.5528, acc = 0.6832
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 92, n_samples = 275/862, baseline = 0.5554, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 93, n_samples = 274/862, baseline = 0.5476, acc = 0.6650
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 94, n_samples = 256/862, baseline = 0.5429, acc = 0.6766
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 95, n_samples = 258/862, baseline = 0.5679, acc = 0.6424
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 96, n_samples = 252/862, baseline = 0.5492, acc = 0.6672
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 97, n_samples = 273/862, baseline = 0.5297, acc = 0.6655
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 98, n_samples = 260/862, baseline = 0.5664, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 99, n_samples = 269/862, baseline = 0.5447, acc = 0.6678
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 0, n_samples = 269/862, baseline = 0.5514, acc = 0.6948
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 1, n_samples = 236/862, baseline = 0.5479, acc = 0.6885
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 2, n_samples = 243/862, baseline = 0.5331, acc = 0.6575
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 3, n_samples = 261/862, baseline = 0.5491, acc = 0.6606
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 4, n_samples = 241/862, baseline = 0.5572, acc = 0.6715
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 5, n_samples = 248/862, baseline = 0.5570, acc = 0.6743
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 6, n_samples = 260/862, baseline = 0.5648, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 7, n_samples = 265/862, baseline = 0.5377, acc = 0.6717
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 8, n_samples = 252/862, baseline = 0.5689, acc = 0.6721
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 9, n_samples = 241/862, baseline = 0.5572, acc = 0.6538
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 10, n_samples = 253/862, baseline = 0.5517, acc = 0.6634
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 11, n_samples = 269/862, baseline = 0.5565, acc = 0.6863
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 12, n_samples = 269/862, baseline = 0.5599, acc = 0.6594
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 13, n_samples = 279/862, baseline = 0.5334, acc = 0.6707
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 14, n_samples = 264/862, baseline = 0.5619, acc = 0.6940
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 15, n_samples = 277/862, baseline = 0.5265, acc = 0.6650
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 16, n_samples = 237/862, baseline = 0.5568, acc = 0.6720
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 17, n_samples = 253/862, baseline = 0.5599, acc = 0.6962
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 18, n_samples = 250/862, baseline = 0.5654, acc = 0.6732
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 19, n_samples = 264/862, baseline = 0.5552, acc = 0.6756
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 20, n_samples = 262/862, baseline = 0.5567, acc = 0.6967
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 21, n_samples = 229/862, baseline = 0.5624, acc = 0.6967
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 22, n_samples = 239/862, baseline = 0.5506, acc = 0.6726
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 23, n_samples = 278/862, baseline = 0.5325, acc = 0.6644
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 24, n_samples = 254/862, baseline = 0.5411, acc = 0.6612
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 25, n_samples = 262/862, baseline = 0.5450, acc = 0.6650
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 26, n_samples = 286/862, baseline = 0.5469, acc = 0.6719
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 27, n_samples = 272/862, baseline = 0.5525, acc = 0.6831
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 28, n_samples = 255/862, baseline = 0.5700, acc = 0.6755
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 29, n_samples = 270/862, baseline = 0.5541, acc = 0.6993
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 30, n_samples = 253/862, baseline = 0.5419, acc = 0.6782
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 31, n_samples = 251/862, baseline = 0.5466, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 32, n_samples = 247/862, baseline = 0.5447, acc = 0.6748
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 33, n_samples = 234/862, baseline = 0.5557, acc = 0.6799
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 34, n_samples = 248/862, baseline = 0.5423, acc = 0.6857
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 35, n_samples = 234/862, baseline = 0.5621, acc = 0.6799
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 36, n_samples = 257/862, baseline = 0.5455, acc = 0.6612
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 37, n_samples = 236/862, baseline = 0.5559, acc = 0.6869
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 38, n_samples = 235/862, baseline = 0.5375, acc = 0.6730
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 39, n_samples = 266/862, baseline = 0.5201, acc = 0.6745
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 40, n_samples = 269/862, baseline = 0.5514, acc = 0.6931
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 41, n_samples = 272/862, baseline = 0.5559, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 42, n_samples = 264/862, baseline = 0.5452, acc = 0.6873
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 43, n_samples = 251/862, baseline = 0.5499, acc = 0.6956
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 44, n_samples = 262/862, baseline = 0.5533, acc = 0.6767
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 45, n_samples = 237/862, baseline = 0.5488, acc = 0.6784
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 46, n_samples = 254/862, baseline = 0.5428, acc = 0.6809
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 47, n_samples = 255/862, baseline = 0.5437, acc = 0.6689
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 48, n_samples = 248/862, baseline = 0.5472, acc = 0.6482
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 49, n_samples = 250/862, baseline = 0.5605, acc = 0.6569
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 50, n_samples = 248/862, baseline = 0.5537, acc = 0.6775
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 51, n_samples = 252/862, baseline = 0.5393, acc = 0.6639
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 52, n_samples = 258/862, baseline = 0.5397, acc = 0.6556
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 53, n_samples = 271/862, baseline = 0.5448, acc = 0.6853
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 54, n_samples = 246/862, baseline = 0.5584, acc = 0.6948
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 55, n_samples = 274/862, baseline = 0.5527, acc = 0.6905
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 56, n_samples = 279/862, baseline = 0.5489, acc = 0.6775
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 57, n_samples = 266/862, baseline = 0.5587, acc = 0.7097
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 58, n_samples = 276/862, baseline = 0.5495, acc = 0.6911
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 59, n_samples = 267/862, baseline = 0.5462, acc = 0.6790
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 60, n_samples = 272/862, baseline = 0.5508, acc = 0.6593
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 61, n_samples = 257/862, baseline = 0.5603, acc = 0.6777
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 62, n_samples = 255/862, baseline = 0.5486, acc = 0.6969
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 63, n_samples = 251/862, baseline = 0.5516, acc = 0.6727
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 64, n_samples = 229/862, baseline = 0.5450, acc = 0.6682
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 65, n_samples = 260/862, baseline = 0.5498, acc = 0.6960
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 66, n_samples = 259/862, baseline = 0.5323, acc = 0.6716
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 67, n_samples = 262/862, baseline = 0.5433, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 68, n_samples = 257/862, baseline = 0.5455, acc = 0.6893
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 69, n_samples = 258/862, baseline = 0.5662, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 70, n_samples = 242/862, baseline = 0.5548, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 71, n_samples = 255/862, baseline = 0.5305, acc = 0.6722
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 72, n_samples = 250/862, baseline = 0.5474, acc = 0.6977
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 73, n_samples = 264/862, baseline = 0.5635, acc = 0.6823
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 74, n_samples = 259/862, baseline = 0.5506, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 75, n_samples = 258/862, baseline = 0.5596, acc = 0.6772
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 76, n_samples = 251/862, baseline = 0.5303, acc = 0.6678
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 77, n_samples = 255/862, baseline = 0.5437, acc = 0.6771
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 78, n_samples = 276/862, baseline = 0.5666, acc = 0.6962
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 79, n_samples = 255/862, baseline = 0.5552, acc = 0.6804
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 80, n_samples = 248/862, baseline = 0.5456, acc = 0.6694
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 81, n_samples = 268/862, baseline = 0.5455, acc = 0.6818
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 82, n_samples = 253/862, baseline = 0.5534, acc = 0.6782
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 83, n_samples = 253/862, baseline = 0.5583, acc = 0.6585
-- [u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 84, n_samples = 254/862, baseline = 0.5444, acc = 0.6842
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 85, n_samples = 251/862, baseline = 0.5303, acc = 0.6678
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 86, n_samples = 249/862, baseline = 0.5481, acc = 0.6754
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 87, n_samples = 270/862, baseline = 0.5591, acc = 0.6571
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 88, n_samples = 261/862, baseline = 0.5391, acc = 0.6822
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 89, n_samples = 273/862, baseline = 0.5501, acc = 0.6689
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 90, n_samples = 276/862, baseline = 0.5529, acc = 0.6621
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 91, n_samples = 271/862, baseline = 0.5584, acc = 0.6887
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 92, n_samples = 253/862, baseline = 0.5484, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 93, n_samples = 256/862, baseline = 0.5264, acc = 0.6518
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 94, n_samples = 281/862, baseline = 0.5663, acc = 0.6954
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 95, n_samples = 262/862, baseline = 0.5567, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 96, n_samples = 252/862, baseline = 0.5525, acc = 0.6902
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 97, n_samples = 269/862, baseline = 0.5497, acc = 0.6678
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 98, n_samples = 260/862, baseline = 0.5399, acc = 0.6827
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 99, n_samples = 244/862, baseline = 0.5712, acc = 0.6990
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 0, n_samples = 273/862, baseline = 0.5501, acc = 0.6723
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 1, n_samples = 268/862, baseline = 0.5640, acc = 0.6835
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 2, n_samples = 266/862, baseline = 0.5537, acc = 0.6795
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 3, n_samples = 243/862, baseline = 0.5250, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 4, n_samples = 254/862, baseline = 0.5576, acc = 0.6809
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 5, n_samples = 225/862, baseline = 0.5479, acc = 0.6876
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 6, n_samples = 255/862, baseline = 0.5552, acc = 0.6771
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 7, n_samples = 264/862, baseline = 0.5602, acc = 0.6756
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 8, n_samples = 253/862, baseline = 0.5419, acc = 0.6765
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 9, n_samples = 253/862, baseline = 0.5452, acc = 0.6601
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 10, n_samples = 238/862, baseline = 0.5401, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 11, n_samples = 269/862, baseline = 0.5599, acc = 0.7032
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 12, n_samples = 273/862, baseline = 0.5620, acc = 0.6842
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 13, n_samples = 259/862, baseline = 0.5721, acc = 0.6716
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 14, n_samples = 269/862, baseline = 0.5396, acc = 0.6948
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 15, n_samples = 265/862, baseline = 0.5611, acc = 0.6901
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 16, n_samples = 255/862, baseline = 0.5552, acc = 0.6820
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 17, n_samples = 229/862, baseline = 0.5450, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 18, n_samples = 238/862, baseline = 0.5561, acc = 0.6731
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 19, n_samples = 232/862, baseline = 0.5444, acc = 0.6905
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 20, n_samples = 259/862, baseline = 0.5522, acc = 0.6716
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 21, n_samples = 281/862, baseline = 0.5370, acc = 0.6730
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 22, n_samples = 257/862, baseline = 0.5587, acc = 0.6678
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 23, n_samples = 255/862, baseline = 0.5667, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 24, n_samples = 260/862, baseline = 0.5432, acc = 0.6827
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 25, n_samples = 275/862, baseline = 0.5451, acc = 0.6848
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 26, n_samples = 257/862, baseline = 0.5355, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 27, n_samples = 282/862, baseline = 0.5552, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots', 'Early_RIC']
LogisticRegression: C = 0.0800, intercept=False iter = 28, n_samples = 267/862, baseline = 0.5546, acc = 0.6924
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 29, n_samples = 234/862, baseline = 0.5557, acc = 0.6799
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 30, n_samples = 253/862, baseline = 0.5271, acc = 0.6831
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 31, n_samples = 254/862, baseline = 0.5609, acc = 0.6826
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 32, n_samples = 272/862, baseline = 0.5797, acc = 0.6881
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 33, n_samples = 268/862, baseline = 0.5758, acc = 0.6902
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 34, n_samples = 235/862, baseline = 0.5550, acc = 0.6746
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 35, n_samples = 258/862, baseline = 0.5381, acc = 0.6738
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 36, n_samples = 272/862, baseline = 0.5525, acc = 0.6966
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 37, n_samples = 251/862, baseline = 0.5532, acc = 0.7087
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 38, n_samples = 290/862, baseline = 0.5752, acc = 0.6888
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 39, n_samples = 262/862, baseline = 0.5533, acc = 0.6750
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 40, n_samples = 275/862, baseline = 0.5724, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 41, n_samples = 273/862, baseline = 0.5416, acc = 0.6825
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 42, n_samples = 240/862, baseline = 0.5643, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 43, n_samples = 246/862, baseline = 0.5455, acc = 0.6818
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 44, n_samples = 251/862, baseline = 0.5597, acc = 0.6759
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 45, n_samples = 238/862, baseline = 0.5609, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 46, n_samples = 245/862, baseline = 0.5575, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 47, n_samples = 260/862, baseline = 0.5382, acc = 0.6744
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 48, n_samples = 262/862, baseline = 0.5517, acc = 0.7033
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 49, n_samples = 224/862, baseline = 0.5611, acc = 0.6803
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 50, n_samples = 247/862, baseline = 0.5724, acc = 0.6618
-- ['Age', u'Max D', 'Volume', 'Aneurysm', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 51, n_samples = 255/862, baseline = 0.5255, acc = 0.6787
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 52, n_samples = 251/862, baseline = 0.5417, acc = 0.6596
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 53, n_samples = 243/862, baseline = 0.5315, acc = 0.6591
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 54, n_samples = 265/862, baseline = 0.5477, acc = 0.6817
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 55, n_samples = 259/862, baseline = 0.5423, acc = 0.6833
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 56, n_samples = 255/862, baseline = 0.5470, acc = 0.6804
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 57, n_samples = 243/862, baseline = 0.5590, acc = 0.6737
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 58, n_samples = 246/862, baseline = 0.5552, acc = 0.6818
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 59, n_samples = 239/862, baseline = 0.5425, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 60, n_samples = 263/862, baseline = 0.5626, acc = 0.6644
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 61, n_samples = 263/862, baseline = 0.5559, acc = 0.7028
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 62, n_samples = 238/862, baseline = 0.5577, acc = 0.6683
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 63, n_samples = 244/862, baseline = 0.5583, acc = 0.6780
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 64, n_samples = 261/862, baseline = 0.5474, acc = 0.6739
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 65, n_samples = 229/862, baseline = 0.5513, acc = 0.6698
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 66, n_samples = 248/862, baseline = 0.5537, acc = 0.6906
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 67, n_samples = 272/862, baseline = 0.5492, acc = 0.6780
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 68, n_samples = 261/862, baseline = 0.5707, acc = 0.7005
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 69, n_samples = 261/862, baseline = 0.5408, acc = 0.6639
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 70, n_samples = 272/862, baseline = 0.5271, acc = 0.6729
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 71, n_samples = 241/862, baseline = 0.5604, acc = 0.6570
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 72, n_samples = 253/862, baseline = 0.5222, acc = 0.6535
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 73, n_samples = 262/862, baseline = 0.5600, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 74, n_samples = 260/862, baseline = 0.5532, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 75, n_samples = 253/862, baseline = 0.5468, acc = 0.6749
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 76, n_samples = 247/862, baseline = 0.5528, acc = 0.6862
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 77, n_samples = 248/862, baseline = 0.5472, acc = 0.6889
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 78, n_samples = 233/862, baseline = 0.5548, acc = 0.7043
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 79, n_samples = 260/862, baseline = 0.5515, acc = 0.7027
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 80, n_samples = 252/862, baseline = 0.5426, acc = 0.6852
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 81, n_samples = 246/862, baseline = 0.5471, acc = 0.6981
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 82, n_samples = 246/862, baseline = 0.5422, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 83, n_samples = 254/862, baseline = 0.5625, acc = 0.6678
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 84, n_samples = 278/862, baseline = 0.5308, acc = 0.6507
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 85, n_samples = 268/862, baseline = 0.5589, acc = 0.6751
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 86, n_samples = 234/862, baseline = 0.5446, acc = 0.6736
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 87, n_samples = 263/862, baseline = 0.5392, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 88, n_samples = 295/862, baseline = 0.5414, acc = 0.6861
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 89, n_samples = 278/862, baseline = 0.5394, acc = 0.6764
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 90, n_samples = 242/862, baseline = 0.5661, acc = 0.6984
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 91, n_samples = 247/862, baseline = 0.5496, acc = 0.7073
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 92, n_samples = 264/862, baseline = 0.5485, acc = 0.6957
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 93, n_samples = 262/862, baseline = 0.5567, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 94, n_samples = 279/862, baseline = 0.5455, acc = 0.6621
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 95, n_samples = 237/862, baseline = 0.5328, acc = 0.6864
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 96, n_samples = 268/862, baseline = 0.5354, acc = 0.6700
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 97, n_samples = 245/862, baseline = 0.5559, acc = 0.6985
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 98, n_samples = 267/862, baseline = 0.5647, acc = 0.6992
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 99, n_samples = 261/862, baseline = 0.5324, acc = 0.6739
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 0, n_samples = 284/862, baseline = 0.5606, acc = 0.6903
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 1, n_samples = 258/862, baseline = 0.5447, acc = 0.6772
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 2, n_samples = 275/862, baseline = 0.5486, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 3, n_samples = 283/862, baseline = 0.5354, acc = 0.6615
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 4, n_samples = 265/862, baseline = 0.5327, acc = 0.6834
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 5, n_samples = 259/862, baseline = 0.5589, acc = 0.6551
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 6, n_samples = 264/862, baseline = 0.5635, acc = 0.6856
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 7, n_samples = 282/862, baseline = 0.5655, acc = 0.6724
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 8, n_samples = 261/862, baseline = 0.5524, acc = 0.7022
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 9, n_samples = 264/862, baseline = 0.5401, acc = 0.6940
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 10, n_samples = 247/862, baseline = 0.5528, acc = 0.6618
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 11, n_samples = 236/862, baseline = 0.5479, acc = 0.6725
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 12, n_samples = 268/862, baseline = 0.5556, acc = 0.6785
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 13, n_samples = 265/862, baseline = 0.5360, acc = 0.6683
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 14, n_samples = 262/862, baseline = 0.5417, acc = 0.6617
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 15, n_samples = 277/862, baseline = 0.5470, acc = 0.6786
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 16, n_samples = 260/862, baseline = 0.5465, acc = 0.6611
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 17, n_samples = 258/862, baseline = 0.5248, acc = 0.6623
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 18, n_samples = 265/862, baseline = 0.5394, acc = 0.6600
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 19, n_samples = 247/862, baseline = 0.5350, acc = 0.6732
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 20, n_samples = 244/862, baseline = 0.5469, acc = 0.6715
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 21, n_samples = 277/862, baseline = 0.5504, acc = 0.6974
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 22, n_samples = 274/862, baseline = 0.5493, acc = 0.6803
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 23, n_samples = 279/862, baseline = 0.5403, acc = 0.6913
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 24, n_samples = 258/862, baseline = 0.5414, acc = 0.6871
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 25, n_samples = 246/862, baseline = 0.5601, acc = 0.6899
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 26, n_samples = 262/862, baseline = 0.5517, acc = 0.6733
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 27, n_samples = 269/862, baseline = 0.5413, acc = 0.6863
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 28, n_samples = 237/862, baseline = 0.5632, acc = 0.6464
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 29, n_samples = 259/862, baseline = 0.5506, acc = 0.6716
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 30, n_samples = 280/862, baseline = 0.5189, acc = 0.6667
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 31, n_samples = 249/862, baseline = 0.5481, acc = 0.6639
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 32, n_samples = 242/862, baseline = 0.5694, acc = 0.6806
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 33, n_samples = 269/862, baseline = 0.5514, acc = 0.6695
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 34, n_samples = 271/862, baseline = 0.5499, acc = 0.6802
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 35, n_samples = 254/862, baseline = 0.5477, acc = 0.6776
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 36, n_samples = 289/862, baseline = 0.5532, acc = 0.6754
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 37, n_samples = 237/862, baseline = 0.5584, acc = 0.6672
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 38, n_samples = 241/862, baseline = 0.5491, acc = 0.6860
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 39, n_samples = 259/862, baseline = 0.5672, acc = 0.6932
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 40, n_samples = 262/862, baseline = 0.5250, acc = 0.6650
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 41, n_samples = 238/862, baseline = 0.5689, acc = 0.6875
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 42, n_samples = 241/862, baseline = 0.5539, acc = 0.6634
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 43, n_samples = 274/862, baseline = 0.5391, acc = 0.6752
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 44, n_samples = 269/862, baseline = 0.5531, acc = 0.6796
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 45, n_samples = 246/862, baseline = 0.5568, acc = 0.6786
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 46, n_samples = 241/862, baseline = 0.5443, acc = 0.6618
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 47, n_samples = 242/862, baseline = 0.5532, acc = 0.6645
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 48, n_samples = 253/862, baseline = 0.5501, acc = 0.6634
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 49, n_samples = 260/862, baseline = 0.5532, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 50, n_samples = 249/862, baseline = 0.5759, acc = 0.6574
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 51, n_samples = 252/862, baseline = 0.5492, acc = 0.6738
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 52, n_samples = 273/862, baseline = 0.5467, acc = 0.6655
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 53, n_samples = 269/862, baseline = 0.5632, acc = 0.6948
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 54, n_samples = 274/862, baseline = 0.5527, acc = 0.6633
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 55, n_samples = 226/862, baseline = 0.5597, acc = 0.6950
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 56, n_samples = 255/862, baseline = 0.5601, acc = 0.6689
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 57, n_samples = 260/862, baseline = 0.5598, acc = 0.6661
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 58, n_samples = 248/862, baseline = 0.5472, acc = 0.6596
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 59, n_samples = 274/862, baseline = 0.5442, acc = 0.6803
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0200, intercept=True iter = 60, n_samples = 243/862, baseline = 0.5428, acc = 0.6834
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 61, n_samples = 254/862, baseline = 0.5510, acc = 0.6793
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 62, n_samples = 235/862, baseline = 0.5598, acc = 0.6730
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 63, n_samples = 255/862, baseline = 0.5667, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 64, n_samples = 265/862, baseline = 0.5595, acc = 0.6516
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 65, n_samples = 234/862, baseline = 0.5525, acc = 0.6831
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 66, n_samples = 242/862, baseline = 0.5645, acc = 0.6855
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 67, n_samples = 263/862, baseline = 0.5326, acc = 0.6761
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 68, n_samples = 245/862, baseline = 0.5511, acc = 0.6645
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 69, n_samples = 273/862, baseline = 0.5501, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 70, n_samples = 252/862, baseline = 0.5639, acc = 0.6623
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 71, n_samples = 262/862, baseline = 0.5600, acc = 0.6583
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 72, n_samples = 238/862, baseline = 0.5593, acc = 0.6875
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 73, n_samples = 278/862, baseline = 0.5445, acc = 0.6918
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 74, n_samples = 250/862, baseline = 0.5637, acc = 0.6928
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 75, n_samples = 267/862, baseline = 0.5563, acc = 0.6454
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 76, n_samples = 252/862, baseline = 0.5459, acc = 0.6852
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 77, n_samples = 267/862, baseline = 0.5462, acc = 0.6319
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 78, n_samples = 276/862, baseline = 0.5751, acc = 0.6741
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 79, n_samples = 262/862, baseline = 0.5683, acc = 0.6833
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 80, n_samples = 249/862, baseline = 0.5334, acc = 0.6623
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 81, n_samples = 245/862, baseline = 0.5478, acc = 0.6742
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 82, n_samples = 258/862, baseline = 0.5679, acc = 0.6606
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 83, n_samples = 240/862, baseline = 0.5756, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 84, n_samples = 260/862, baseline = 0.5415, acc = 0.6777
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 85, n_samples = 267/862, baseline = 0.5529, acc = 0.6605
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 86, n_samples = 258/862, baseline = 0.5513, acc = 0.6672
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 87, n_samples = 259/862, baseline = 0.5539, acc = 0.6816
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 88, n_samples = 263/862, baseline = 0.5609, acc = 0.6644
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 89, n_samples = 255/862, baseline = 0.5371, acc = 0.6623
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 90, n_samples = 267/862, baseline = 0.5462, acc = 0.6790
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 91, n_samples = 258/862, baseline = 0.5364, acc = 0.6689
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 92, n_samples = 263/862, baseline = 0.5559, acc = 0.6878
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 93, n_samples = 241/862, baseline = 0.5475, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 94, n_samples = 247/862, baseline = 0.5593, acc = 0.6748
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 95, n_samples = 258/862, baseline = 0.5397, acc = 0.6887
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 96, n_samples = 234/862, baseline = 0.5525, acc = 0.7006
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 97, n_samples = 269/862, baseline = 0.5379, acc = 0.6678
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 98, n_samples = 259/862, baseline = 0.5406, acc = 0.6882
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 99, n_samples = 264/862, baseline = 0.5385, acc = 0.6756
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 0, n_samples = 248/862, baseline = 0.5505, acc = 0.6857
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 1, n_samples = 240/862, baseline = 0.5740, acc = 0.6704
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 2, n_samples = 283/862, baseline = 0.5337, acc = 0.6684
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 3, n_samples = 270/862, baseline = 0.5490, acc = 0.6926
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 4, n_samples = 227/862, baseline = 0.5543, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 5, n_samples = 241/862, baseline = 0.5572, acc = 0.6683
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 6, n_samples = 253/862, baseline = 0.5764, acc = 0.6864
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 7, n_samples = 255/862, baseline = 0.5519, acc = 0.6755
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 8, n_samples = 249/862, baseline = 0.5563, acc = 0.6721
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 9, n_samples = 275/862, baseline = 0.5417, acc = 0.6371
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 10, n_samples = 239/862, baseline = 0.5297, acc = 0.6661
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 11, n_samples = 261/862, baseline = 0.5491, acc = 0.6622
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 12, n_samples = 255/862, baseline = 0.5568, acc = 0.6656
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 13, n_samples = 260/862, baseline = 0.5349, acc = 0.6860
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 14, n_samples = 258/862, baseline = 0.5546, acc = 0.6854
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 15, n_samples = 263/862, baseline = 0.5609, acc = 0.6745
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 16, n_samples = 254/862, baseline = 0.5493, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 17, n_samples = 234/862, baseline = 0.5669, acc = 0.6911
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 18, n_samples = 249/862, baseline = 0.5498, acc = 0.6770
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 19, n_samples = 264/862, baseline = 0.5702, acc = 0.6773
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 20, n_samples = 239/862, baseline = 0.5554, acc = 0.6838
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 21, n_samples = 268/862, baseline = 0.5404, acc = 0.6886
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 22, n_samples = 258/862, baseline = 0.5530, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 23, n_samples = 282/862, baseline = 0.5362, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 24, n_samples = 263/862, baseline = 0.5559, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 25, n_samples = 262/862, baseline = 0.5433, acc = 0.6617
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 26, n_samples = 289/862, baseline = 0.5689, acc = 0.6754
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 27, n_samples = 246/862, baseline = 0.5682, acc = 0.6899
-- [u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 28, n_samples = 267/862, baseline = 0.5513, acc = 0.6723
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 29, n_samples = 265/862, baseline = 0.5628, acc = 0.6399
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 30, n_samples = 264/862, baseline = 0.5569, acc = 0.6806
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 31, n_samples = 239/862, baseline = 0.5490, acc = 0.6613
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 32, n_samples = 252/862, baseline = 0.5639, acc = 0.6492
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 33, n_samples = 269/862, baseline = 0.5767, acc = 0.6762
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 34, n_samples = 269/862, baseline = 0.5599, acc = 0.6728
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 35, n_samples = 260/862, baseline = 0.5581, acc = 0.6910
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 36, n_samples = 262/862, baseline = 0.5517, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 37, n_samples = 277/862, baseline = 0.5538, acc = 0.6769
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 38, n_samples = 267/862, baseline = 0.5714, acc = 0.6891
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 39, n_samples = 237/862, baseline = 0.5504, acc = 0.6912
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 40, n_samples = 281/862, baseline = 0.5491, acc = 0.6988
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 41, n_samples = 247/862, baseline = 0.5496, acc = 0.6894
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 42, n_samples = 255/862, baseline = 0.5486, acc = 0.6804
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 43, n_samples = 227/862, baseline = 0.5370, acc = 0.6819
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 44, n_samples = 265/862, baseline = 0.5595, acc = 0.6868
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 45, n_samples = 270/862, baseline = 0.5287, acc = 0.6689
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 46, n_samples = 236/862, baseline = 0.5495, acc = 0.6853
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 47, n_samples = 260/862, baseline = 0.5515, acc = 0.6628
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 48, n_samples = 257/862, baseline = 0.5471, acc = 0.6760
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 49, n_samples = 254/862, baseline = 0.5543, acc = 0.6694
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 50, n_samples = 279/862, baseline = 0.5472, acc = 0.6810
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 51, n_samples = 264/862, baseline = 0.5452, acc = 0.6522
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 52, n_samples = 264/862, baseline = 0.5452, acc = 0.6722
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 53, n_samples = 277/862, baseline = 0.5641, acc = 0.6821
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 54, n_samples = 248/862, baseline = 0.5472, acc = 0.6792
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 55, n_samples = 275/862, baseline = 0.5486, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 56, n_samples = 290/862, baseline = 0.5315, acc = 0.6696
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 57, n_samples = 278/862, baseline = 0.5719, acc = 0.6747
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 58, n_samples = 260/862, baseline = 0.5449, acc = 0.6910
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 59, n_samples = 266/862, baseline = 0.5386, acc = 0.6829
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 60, n_samples = 260/862, baseline = 0.5465, acc = 0.6811
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 61, n_samples = 259/862, baseline = 0.5572, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 62, n_samples = 262/862, baseline = 0.5667, acc = 0.6733
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 63, n_samples = 276/862, baseline = 0.5648, acc = 0.6741
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 64, n_samples = 281/862, baseline = 0.5628, acc = 0.6764
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 65, n_samples = 266/862, baseline = 0.5352, acc = 0.6762
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 66, n_samples = 261/862, baseline = 0.5541, acc = 0.6872
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 67, n_samples = 258/862, baseline = 0.5579, acc = 0.6854
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 68, n_samples = 259/862, baseline = 0.5605, acc = 0.6451
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 69, n_samples = 274/862, baseline = 0.5476, acc = 0.6769
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 70, n_samples = 263/862, baseline = 0.5543, acc = 0.6761
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 71, n_samples = 254/862, baseline = 0.5378, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 72, n_samples = 244/862, baseline = 0.5518, acc = 0.6472
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 73, n_samples = 275/862, baseline = 0.5690, acc = 0.6848
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 74, n_samples = 243/862, baseline = 0.5477, acc = 0.6785
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 75, n_samples = 259/862, baseline = 0.5622, acc = 0.6799
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 76, n_samples = 259/862, baseline = 0.5473, acc = 0.6965
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 77, n_samples = 267/862, baseline = 0.5496, acc = 0.6807
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 78, n_samples = 232/862, baseline = 0.5381, acc = 0.6683
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 79, n_samples = 256/862, baseline = 0.5479, acc = 0.6485
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 80, n_samples = 260/862, baseline = 0.5598, acc = 0.6910
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 81, n_samples = 268/862, baseline = 0.5640, acc = 0.6717
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 82, n_samples = 277/862, baseline = 0.5231, acc = 0.6701
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 83, n_samples = 246/862, baseline = 0.5666, acc = 0.6769
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 84, n_samples = 259/862, baseline = 0.5688, acc = 0.6617
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 85, n_samples = 250/862, baseline = 0.5408, acc = 0.6748
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 86, n_samples = 240/862, baseline = 0.5547, acc = 0.6881
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 87, n_samples = 240/862, baseline = 0.5354, acc = 0.6704
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 88, n_samples = 256/862, baseline = 0.5594, acc = 0.6914
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 89, n_samples = 260/862, baseline = 0.5415, acc = 0.6777
-- [u'Max D', 'Volume', 'Max_Dose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 90, n_samples = 244/862, baseline = 0.5663, acc = 0.6731
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 91, n_samples = 248/862, baseline = 0.5456, acc = 0.6743
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 92, n_samples = 242/862, baseline = 0.5565, acc = 0.6613
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 93, n_samples = 240/862, baseline = 0.5434, acc = 0.6704
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 94, n_samples = 266/862, baseline = 0.5453, acc = 0.6862
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 95, n_samples = 259/862, baseline = 0.5456, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 96, n_samples = 288/862, baseline = 0.5418, acc = 0.6585
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 97, n_samples = 249/862, baseline = 0.5775, acc = 0.6835
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 98, n_samples = 245/862, baseline = 0.5478, acc = 0.6791
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 99, n_samples = 256/862, baseline = 0.5363, acc = 0.6617
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 0, n_samples = 254/862, baseline = 0.5592, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 1, n_samples = 246/862, baseline = 0.5617, acc = 0.6640
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 2, n_samples = 263/862, baseline = 0.5526, acc = 0.6644
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 3, n_samples = 261/862, baseline = 0.5491, acc = 0.6905
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 4, n_samples = 270/862, baseline = 0.5473, acc = 0.6993
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 5, n_samples = 290/862, baseline = 0.5559, acc = 0.6661
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 6, n_samples = 238/862, baseline = 0.5465, acc = 0.6955
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 7, n_samples = 261/862, baseline = 0.5524, acc = 0.6855
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 8, n_samples = 247/862, baseline = 0.5561, acc = 0.7073
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 9, n_samples = 254/862, baseline = 0.5576, acc = 0.6678
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 10, n_samples = 270/862, baseline = 0.5608, acc = 0.6976
-- ['Age', u'SM', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 11, n_samples = 263/862, baseline = 0.5576, acc = 0.7045
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 12, n_samples = 291/862, baseline = 0.5377, acc = 0.6760
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 13, n_samples = 263/862, baseline = 0.5359, acc = 0.6678
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 14, n_samples = 258/862, baseline = 0.5546, acc = 0.6805
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 15, n_samples = 247/862, baseline = 0.5561, acc = 0.6927
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 16, n_samples = 272/862, baseline = 0.5492, acc = 0.7000
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 17, n_samples = 277/862, baseline = 0.5504, acc = 0.7197
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 18, n_samples = 251/862, baseline = 0.5516, acc = 0.6972
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 19, n_samples = 230/862, baseline = 0.5459, acc = 0.6835
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 20, n_samples = 250/862, baseline = 0.5654, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 21, n_samples = 252/862, baseline = 0.5525, acc = 0.6852
-- ['Age', u'SM', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 22, n_samples = 267/862, baseline = 0.5630, acc = 0.6941
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 23, n_samples = 251/862, baseline = 0.5466, acc = 0.6809
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 24, n_samples = 263/862, baseline = 0.5543, acc = 0.6795
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 25, n_samples = 266/862, baseline = 0.5554, acc = 0.6913
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 26, n_samples = 244/862, baseline = 0.5502, acc = 0.6958
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 27, n_samples = 262/862, baseline = 0.5533, acc = 0.6767
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 28, n_samples = 250/862, baseline = 0.5425, acc = 0.6895
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 29, n_samples = 267/862, baseline = 0.5496, acc = 0.6824
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 30, n_samples = 257/862, baseline = 0.5455, acc = 0.6942
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 31, n_samples = 262/862, baseline = 0.5550, acc = 0.6917
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 32, n_samples = 248/862, baseline = 0.5586, acc = 0.6792
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 33, n_samples = 264/862, baseline = 0.5485, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 34, n_samples = 270/862, baseline = 0.5642, acc = 0.6926
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 35, n_samples = 256/862, baseline = 0.5512, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 36, n_samples = 270/862, baseline = 0.5608, acc = 0.6875
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 37, n_samples = 271/862, baseline = 0.5415, acc = 0.6819
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 38, n_samples = 235/862, baseline = 0.5598, acc = 0.6986
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 39, n_samples = 247/862, baseline = 0.5675, acc = 0.6829
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 40, n_samples = 248/862, baseline = 0.5733, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 41, n_samples = 260/862, baseline = 0.5631, acc = 0.6944
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 42, n_samples = 243/862, baseline = 0.5493, acc = 0.6672
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 43, n_samples = 259/862, baseline = 0.5638, acc = 0.6667
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 44, n_samples = 235/862, baseline = 0.5518, acc = 0.6826
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 45, n_samples = 260/862, baseline = 0.5482, acc = 0.6894
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 46, n_samples = 256/862, baseline = 0.5611, acc = 0.6782
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 47, n_samples = 263/862, baseline = 0.5392, acc = 0.6678
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 48, n_samples = 254/862, baseline = 0.5576, acc = 0.7072
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 49, n_samples = 271/862, baseline = 0.5499, acc = 0.6853
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 50, n_samples = 259/862, baseline = 0.5638, acc = 0.6866
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 51, n_samples = 237/862, baseline = 0.5632, acc = 0.6768
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 52, n_samples = 258/862, baseline = 0.5430, acc = 0.6921
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 53, n_samples = 272/862, baseline = 0.5492, acc = 0.6610
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 54, n_samples = 267/862, baseline = 0.5630, acc = 0.6941
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 55, n_samples = 255/862, baseline = 0.5404, acc = 0.6787
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 56, n_samples = 248/862, baseline = 0.5537, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 57, n_samples = 252/862, baseline = 0.5689, acc = 0.6984
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 58, n_samples = 276/862, baseline = 0.5580, acc = 0.7048
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 59, n_samples = 254/862, baseline = 0.5444, acc = 0.6760
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 60, n_samples = 261/862, baseline = 0.5624, acc = 0.6772
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 61, n_samples = 284/862, baseline = 0.5484, acc = 0.6834
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 62, n_samples = 241/862, baseline = 0.5604, acc = 0.7101
-- [u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 63, n_samples = 256/862, baseline = 0.5495, acc = 0.6848
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 64, n_samples = 272/862, baseline = 0.5678, acc = 0.6729
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 65, n_samples = 262/862, baseline = 0.5333, acc = 0.6733
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 66, n_samples = 274/862, baseline = 0.5408, acc = 0.6837
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 67, n_samples = 265/862, baseline = 0.5494, acc = 0.6884
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 68, n_samples = 261/862, baseline = 0.5607, acc = 0.6905
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 69, n_samples = 238/862, baseline = 0.5465, acc = 0.6827
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 70, n_samples = 269/862, baseline = 0.5531, acc = 0.6610
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 71, n_samples = 289/862, baseline = 0.5410, acc = 0.6911
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 72, n_samples = 267/862, baseline = 0.5597, acc = 0.6992
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 73, n_samples = 249/862, baseline = 0.5400, acc = 0.6998
-- ['Age', u'Max D', 'Volume', u'Embo', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 74, n_samples = 283/862, baseline = 0.5475, acc = 0.6857
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 75, n_samples = 258/862, baseline = 0.5546, acc = 0.7169
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 76, n_samples = 272/862, baseline = 0.5271, acc = 0.6881
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 77, n_samples = 252/862, baseline = 0.5262, acc = 0.6656
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 78, n_samples = 260/862, baseline = 0.5465, acc = 0.7010
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 79, n_samples = 258/862, baseline = 0.5629, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 80, n_samples = 220/862, baseline = 0.5312, acc = 0.6729
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 81, n_samples = 247/862, baseline = 0.5447, acc = 0.6927
-- ['Age', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 82, n_samples = 241/862, baseline = 0.5411, acc = 0.6457
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 83, n_samples = 264/862, baseline = 0.5452, acc = 0.6689
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 84, n_samples = 275/862, baseline = 0.5520, acc = 0.6712
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 85, n_samples = 249/862, baseline = 0.5481, acc = 0.6754
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 86, n_samples = 265/862, baseline = 0.5511, acc = 0.6834
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 87, n_samples = 251/862, baseline = 0.5450, acc = 0.6678
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 88, n_samples = 257/862, baseline = 0.5455, acc = 0.6529
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 89, n_samples = 245/862, baseline = 0.5624, acc = 0.6921
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 90, n_samples = 249/862, baseline = 0.5481, acc = 0.6639
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 91, n_samples = 256/862, baseline = 0.5594, acc = 0.6997
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 92, n_samples = 287/862, baseline = 0.5461, acc = 0.6539
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 93, n_samples = 249/862, baseline = 0.5302, acc = 0.6721
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 94, n_samples = 260/862, baseline = 0.5731, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 95, n_samples = 265/862, baseline = 0.5377, acc = 0.6767
-- ['Age', u'SM', u'Max D', 'Volume', u'Embo', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 96, n_samples = 250/862, baseline = 0.5735, acc = 0.6307
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 97, n_samples = 253/862, baseline = 0.5681, acc = 0.6962
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 98, n_samples = 265/862, baseline = 0.5528, acc = 0.6549
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 99, n_samples = 240/862, baseline = 0.5579, acc = 0.6913
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 0, n_samples = 174/862, baseline = 0.5596, acc = 0.6715
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 1, n_samples = 158/862, baseline = 0.5497, acc = 0.6733
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 2, n_samples = 181/862, baseline = 0.5609, acc = 0.6858
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 3, n_samples = 182/862, baseline = 0.5588, acc = 0.6765
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 4, n_samples = 166/862, baseline = 0.5560, acc = 0.6739
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 5, n_samples = 169/862, baseline = 0.5469, acc = 0.6364
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 6, n_samples = 163/862, baseline = 0.5536, acc = 0.6681
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 7, n_samples = 172/862, baseline = 0.5580, acc = 0.6725
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 8, n_samples = 146/862, baseline = 0.5489, acc = 0.6816
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 9, n_samples = 162/862, baseline = 0.5400, acc = 0.6743
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 10, n_samples = 168/862, baseline = 0.5533, acc = 0.6643
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 11, n_samples = 160/862, baseline = 0.5413, acc = 0.6638
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 12, n_samples = 192/862, baseline = 0.5597, acc = 0.6925
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 13, n_samples = 189/862, baseline = 0.5587, acc = 0.6523
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 14, n_samples = 160/862, baseline = 0.5513, acc = 0.6766
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 15, n_samples = 158/862, baseline = 0.5511, acc = 0.6776
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 16, n_samples = 169/862, baseline = 0.5570, acc = 0.6869
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 17, n_samples = 166/862, baseline = 0.5417, acc = 0.6724
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 18, n_samples = 165/862, baseline = 0.5423, acc = 0.6700
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 19, n_samples = 169/862, baseline = 0.5584, acc = 0.6595
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 20, n_samples = 172/862, baseline = 0.5536, acc = 0.6710
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 21, n_samples = 162/862, baseline = 0.5514, acc = 0.6671
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 22, n_samples = 153/862, baseline = 0.5458, acc = 0.6827
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 23, n_samples = 185/862, baseline = 0.5436, acc = 0.6588
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 24, n_samples = 180/862, baseline = 0.5674, acc = 0.6789
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 25, n_samples = 165/862, baseline = 0.5552, acc = 0.6772
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 26, n_samples = 172/862, baseline = 0.5377, acc = 0.6797
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 27, n_samples = 168/862, baseline = 0.5418, acc = 0.6671
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 28, n_samples = 166/862, baseline = 0.5503, acc = 0.6710
-- [u'Max D', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 29, n_samples = 158/862, baseline = 0.5469, acc = 0.6605
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 30, n_samples = 175/862, baseline = 0.5328, acc = 0.6361
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 31, n_samples = 199/862, baseline = 0.5339, acc = 0.6576
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 32, n_samples = 172/862, baseline = 0.5609, acc = 0.6725
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 33, n_samples = 156/862, baseline = 0.5581, acc = 0.6785
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 34, n_samples = 162/862, baseline = 0.5614, acc = 0.6286
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 35, n_samples = 175/862, baseline = 0.5531, acc = 0.6914
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 36, n_samples = 184/862, baseline = 0.5516, acc = 0.6652
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 37, n_samples = 175/862, baseline = 0.5531, acc = 0.6696
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 38, n_samples = 167/862, baseline = 0.5396, acc = 0.6734
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 39, n_samples = 181/862, baseline = 0.5580, acc = 0.6725
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 40, n_samples = 161/862, baseline = 0.5492, acc = 0.6847
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 41, n_samples = 174/862, baseline = 0.5581, acc = 0.6642
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 42, n_samples = 163/862, baseline = 0.5365, acc = 0.6495
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 43, n_samples = 159/862, baseline = 0.5633, acc = 0.6814
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 44, n_samples = 171/862, baseline = 0.5630, acc = 0.6599
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 45, n_samples = 168/862, baseline = 0.5476, acc = 0.6787
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 46, n_samples = 180/862, baseline = 0.5557, acc = 0.6789
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 47, n_samples = 193/862, baseline = 0.5456, acc = 0.6816
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 48, n_samples = 146/862, baseline = 0.5587, acc = 0.6620
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 49, n_samples = 193/862, baseline = 0.5411, acc = 0.6592
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 50, n_samples = 170/862, baseline = 0.5636, acc = 0.6965
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 51, n_samples = 177/862, baseline = 0.5533, acc = 0.6672
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 52, n_samples = 153/862, baseline = 0.5684, acc = 0.6446
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 53, n_samples = 165/862, baseline = 0.5481, acc = 0.6714
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 54, n_samples = 180/862, baseline = 0.5528, acc = 0.6833
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 55, n_samples = 176/862, baseline = 0.5598, acc = 0.6647
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 56, n_samples = 171/862, baseline = 0.5514, acc = 0.6729
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 57, n_samples = 177/862, baseline = 0.5533, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 58, n_samples = 160/862, baseline = 0.5413, acc = 0.6781
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 59, n_samples = 181/862, baseline = 0.5419, acc = 0.6696
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 60, n_samples = 156/862, baseline = 0.5666, acc = 0.6516
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 61, n_samples = 159/862, baseline = 0.5505, acc = 0.6757
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 62, n_samples = 175/862, baseline = 0.5313, acc = 0.6434
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 63, n_samples = 166/862, baseline = 0.5546, acc = 0.6753
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 64, n_samples = 157/862, baseline = 0.5560, acc = 0.6723
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 65, n_samples = 177/862, baseline = 0.5474, acc = 0.6628
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 66, n_samples = 153/862, baseline = 0.5614, acc = 0.6869
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 67, n_samples = 168/862, baseline = 0.5432, acc = 0.6758
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 68, n_samples = 149/862, baseline = 0.5498, acc = 0.6844
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 69, n_samples = 192/862, baseline = 0.5448, acc = 0.6836
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 70, n_samples = 202/862, baseline = 0.5424, acc = 0.6697
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 71, n_samples = 166/862, baseline = 0.5489, acc = 0.6911
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 72, n_samples = 207/862, baseline = 0.5435, acc = 0.6840
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 73, n_samples = 161/862, baseline = 0.5407, acc = 0.6690
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 74, n_samples = 162/862, baseline = 0.5371, acc = 0.6743
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 75, n_samples = 175/862, baseline = 0.5473, acc = 0.6667
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 76, n_samples = 183/862, baseline = 0.5493, acc = 0.6775
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 77, n_samples = 174/862, baseline = 0.5538, acc = 0.6672
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 78, n_samples = 156/862, baseline = 0.5524, acc = 0.6827
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 79, n_samples = 187/862, baseline = 0.5467, acc = 0.6681
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 80, n_samples = 165/862, baseline = 0.5538, acc = 0.6872
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 81, n_samples = 178/862, baseline = 0.5468, acc = 0.6798
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 82, n_samples = 197/862, baseline = 0.5534, acc = 0.6842
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 83, n_samples = 160/862, baseline = 0.5541, acc = 0.6809
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 84, n_samples = 180/862, baseline = 0.5557, acc = 0.6496
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 85, n_samples = 170/862, baseline = 0.5665, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 86, n_samples = 170/862, baseline = 0.5506, acc = 0.6893
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 87, n_samples = 154/862, baseline = 0.5410, acc = 0.6681
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 88, n_samples = 189/862, baseline = 0.5557, acc = 0.6493
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 89, n_samples = 160/862, baseline = 0.5513, acc = 0.6766
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 90, n_samples = 150/862, baseline = 0.5463, acc = 0.6728
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 91, n_samples = 190/862, baseline = 0.5536, acc = 0.6845
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 92, n_samples = 156/862, baseline = 0.5567, acc = 0.6785
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 93, n_samples = 169/862, baseline = 0.5512, acc = 0.6811
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 94, n_samples = 168/862, baseline = 0.5490, acc = 0.6816
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 95, n_samples = 170/862, baseline = 0.5665, acc = 0.6951
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 96, n_samples = 181/862, baseline = 0.5448, acc = 0.6637
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 97, n_samples = 170/862, baseline = 0.5491, acc = 0.6647
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=False iter = 98, n_samples = 149/862, baseline = 0.5526, acc = 0.6746
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=False iter = 99, n_samples = 197/862, baseline = 0.5474, acc = 0.6782
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 0, n_samples = 205/862, baseline = 0.5540, acc = 0.6865
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 1, n_samples = 158/862, baseline = 0.5440, acc = 0.6662
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 2, n_samples = 164/862, baseline = 0.5673, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 3, n_samples = 161/862, baseline = 0.5478, acc = 0.6862
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 4, n_samples = 158/862, baseline = 0.5568, acc = 0.6591
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 5, n_samples = 179/862, baseline = 0.5593, acc = 0.6823
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 6, n_samples = 151/862, baseline = 0.5401, acc = 0.6554
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 7, n_samples = 172/862, baseline = 0.5594, acc = 0.6928
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 8, n_samples = 169/862, baseline = 0.5498, acc = 0.6955
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 9, n_samples = 168/862, baseline = 0.5375, acc = 0.6729
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 10, n_samples = 165/862, baseline = 0.5538, acc = 0.6887
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 11, n_samples = 171/862, baseline = 0.5716, acc = 0.6556
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 12, n_samples = 179/862, baseline = 0.5608, acc = 0.6633
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 13, n_samples = 183/862, baseline = 0.5434, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 14, n_samples = 191/862, baseline = 0.5410, acc = 0.6766
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 15, n_samples = 176/862, baseline = 0.5437, acc = 0.6706
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 16, n_samples = 177/862, baseline = 0.5693, acc = 0.6569
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 17, n_samples = 186/862, baseline = 0.5473, acc = 0.6967
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 18, n_samples = 183/862, baseline = 0.5434, acc = 0.6730
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 19, n_samples = 154/862, baseline = 0.5579, acc = 0.6695
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 20, n_samples = 178/862, baseline = 0.5468, acc = 0.6769
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 21, n_samples = 171/862, baseline = 0.5499, acc = 0.6758
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 22, n_samples = 181/862, baseline = 0.5580, acc = 0.6902
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 23, n_samples = 168/862, baseline = 0.5490, acc = 0.6729
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 24, n_samples = 158/862, baseline = 0.5554, acc = 0.6719
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 25, n_samples = 175/862, baseline = 0.5619, acc = 0.6958
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 26, n_samples = 185/862, baseline = 0.5510, acc = 0.6647
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 27, n_samples = 148/862, baseline = 0.5574, acc = 0.6821
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 28, n_samples = 163/862, baseline = 0.5494, acc = 0.6853
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 29, n_samples = 183/862, baseline = 0.5538, acc = 0.6701
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 30, n_samples = 167/862, baseline = 0.5468, acc = 0.6619
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 31, n_samples = 157/862, baseline = 0.5390, acc = 0.6709
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 32, n_samples = 169/862, baseline = 0.5570, acc = 0.6840
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 33, n_samples = 174/862, baseline = 0.5494, acc = 0.6831
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 34, n_samples = 186/862, baseline = 0.5533, acc = 0.6538
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 35, n_samples = 174/862, baseline = 0.5509, acc = 0.6759
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 36, n_samples = 169/862, baseline = 0.5455, acc = 0.6782
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 37, n_samples = 184/862, baseline = 0.5560, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=False iter = 38, n_samples = 168/862, baseline = 0.5605, acc = 0.6657
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 39, n_samples = 155/862, baseline = 0.5573, acc = 0.6393
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 40, n_samples = 164/862, baseline = 0.5602, acc = 0.6619
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 41, n_samples = 160/862, baseline = 0.5456, acc = 0.6781
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 42, n_samples = 171/862, baseline = 0.5557, acc = 0.6946
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 43, n_samples = 169/862, baseline = 0.5570, acc = 0.6696
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 44, n_samples = 179/862, baseline = 0.5403, acc = 0.6779
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 45, n_samples = 174/862, baseline = 0.5334, acc = 0.6599
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 46, n_samples = 164/862, baseline = 0.5487, acc = 0.6777
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 47, n_samples = 178/862, baseline = 0.5512, acc = 0.6959
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 48, n_samples = 184/862, baseline = 0.5531, acc = 0.6829
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 49, n_samples = 169/862, baseline = 0.5483, acc = 0.6825
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 50, n_samples = 174/862, baseline = 0.5523, acc = 0.6715
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 51, n_samples = 163/862, baseline = 0.5451, acc = 0.6881
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 52, n_samples = 166/862, baseline = 0.5632, acc = 0.6897
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 53, n_samples = 167/862, baseline = 0.5410, acc = 0.6906
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 54, n_samples = 169/862, baseline = 0.5584, acc = 0.6854
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 55, n_samples = 165/862, baseline = 0.5352, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 56, n_samples = 176/862, baseline = 0.5569, acc = 0.7012
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 57, n_samples = 177/862, baseline = 0.5314, acc = 0.6526
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 58, n_samples = 170/862, baseline = 0.5405, acc = 0.6662
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 59, n_samples = 164/862, baseline = 0.5516, acc = 0.6762
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 60, n_samples = 174/862, baseline = 0.5378, acc = 0.6715
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 61, n_samples = 152/862, baseline = 0.5535, acc = 0.6732
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 62, n_samples = 177/862, baseline = 0.5518, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 63, n_samples = 182/862, baseline = 0.5441, acc = 0.6794
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 64, n_samples = 170/862, baseline = 0.5535, acc = 0.6908
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 65, n_samples = 176/862, baseline = 0.5554, acc = 0.6735
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 66, n_samples = 155/862, baseline = 0.5545, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 67, n_samples = 180/862, baseline = 0.5411, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 68, n_samples = 182/862, baseline = 0.5500, acc = 0.6750
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 69, n_samples = 172/862, baseline = 0.5464, acc = 0.6783
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 70, n_samples = 169/862, baseline = 0.5541, acc = 0.6811
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 71, n_samples = 169/862, baseline = 0.5613, acc = 0.6421
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 72, n_samples = 184/862, baseline = 0.5708, acc = 0.6519
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 73, n_samples = 171/862, baseline = 0.5601, acc = 0.6802
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 74, n_samples = 190/862, baseline = 0.5610, acc = 0.6994
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 75, n_samples = 173/862, baseline = 0.5399, acc = 0.6676
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 76, n_samples = 183/862, baseline = 0.5523, acc = 0.6951
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 77, n_samples = 153/862, baseline = 0.5501, acc = 0.6685
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 78, n_samples = 177/862, baseline = 0.5504, acc = 0.6774
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 79, n_samples = 157/862, baseline = 0.5489, acc = 0.6723
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 80, n_samples = 167/862, baseline = 0.5511, acc = 0.6719
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 81, n_samples = 174/862, baseline = 0.5392, acc = 0.6744
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 82, n_samples = 189/862, baseline = 0.5423, acc = 0.6776
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 83, n_samples = 189/862, baseline = 0.5319, acc = 0.6627
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 84, n_samples = 174/862, baseline = 0.5610, acc = 0.6701
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 85, n_samples = 192/862, baseline = 0.5388, acc = 0.6881
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 86, n_samples = 177/862, baseline = 0.5620, acc = 0.6774
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 87, n_samples = 175/862, baseline = 0.5488, acc = 0.6681
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 88, n_samples = 178/862, baseline = 0.5570, acc = 0.6769
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 89, n_samples = 169/862, baseline = 0.5440, acc = 0.6768
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 90, n_samples = 170/862, baseline = 0.5520, acc = 0.6676
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 91, n_samples = 178/862, baseline = 0.5482, acc = 0.6637
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 92, n_samples = 153/862, baseline = 0.5543, acc = 0.6925
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 93, n_samples = 172/862, baseline = 0.5507, acc = 0.6855
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 94, n_samples = 173/862, baseline = 0.5646, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 95, n_samples = 168/862, baseline = 0.5504, acc = 0.6888
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 96, n_samples = 158/862, baseline = 0.5597, acc = 0.6619
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 97, n_samples = 168/862, baseline = 0.5634, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=False iter = 98, n_samples = 170/862, baseline = 0.5462, acc = 0.6835
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=False iter = 99, n_samples = 188/862, baseline = 0.5579, acc = 0.6766
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 0, n_samples = 159/862, baseline = 0.5533, acc = 0.6828
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 1, n_samples = 173/862, baseline = 0.5501, acc = 0.6967
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 2, n_samples = 143/862, baseline = 0.5480, acc = 0.6732
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 3, n_samples = 179/862, baseline = 0.5359, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 4, n_samples = 150/862, baseline = 0.5449, acc = 0.6728
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 5, n_samples = 185/862, baseline = 0.5451, acc = 0.6942
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 6, n_samples = 162/862, baseline = 0.5486, acc = 0.6657
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 7, n_samples = 177/862, baseline = 0.5679, acc = 0.6642
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 8, n_samples = 172/862, baseline = 0.5609, acc = 0.6899
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 9, n_samples = 164/862, baseline = 0.5501, acc = 0.6777
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 10, n_samples = 163/862, baseline = 0.5565, acc = 0.6753
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 11, n_samples = 165/862, baseline = 0.5710, acc = 0.6815
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 12, n_samples = 173/862, baseline = 0.5515, acc = 0.6865
-- ['Age', u'Max D', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 13, n_samples = 187/862, baseline = 0.5437, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 14, n_samples = 177/862, baseline = 0.5387, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 15, n_samples = 172/862, baseline = 0.5565, acc = 0.6841
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Aneurysm', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 16, n_samples = 169/862, baseline = 0.5556, acc = 0.7027
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 17, n_samples = 181/862, baseline = 0.5433, acc = 0.6769
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 18, n_samples = 170/862, baseline = 0.5477, acc = 0.6821
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 19, n_samples = 172/862, baseline = 0.5435, acc = 0.6725
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 20, n_samples = 166/862, baseline = 0.5417, acc = 0.6897
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 21, n_samples = 172/862, baseline = 0.5449, acc = 0.6913
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 22, n_samples = 168/862, baseline = 0.5533, acc = 0.7017
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 23, n_samples = 175/862, baseline = 0.5444, acc = 0.6667
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 24, n_samples = 178/862, baseline = 0.5556, acc = 0.6652
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 25, n_samples = 186/862, baseline = 0.5577, acc = 0.6790
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 26, n_samples = 179/862, baseline = 0.5549, acc = 0.6559
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 27, n_samples = 193/862, baseline = 0.5381, acc = 0.6682
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 28, n_samples = 160/862, baseline = 0.5470, acc = 0.6695
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 29, n_samples = 180/862, baseline = 0.5425, acc = 0.6804
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 30, n_samples = 148/862, baseline = 0.5420, acc = 0.6639
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 31, n_samples = 165/862, baseline = 0.5452, acc = 0.6872
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 32, n_samples = 180/862, baseline = 0.5513, acc = 0.6950
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 33, n_samples = 175/862, baseline = 0.5691, acc = 0.6885
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 34, n_samples = 184/862, baseline = 0.5693, acc = 0.6755
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 35, n_samples = 159/862, baseline = 0.5448, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 36, n_samples = 169/862, baseline = 0.5584, acc = 0.6768
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 37, n_samples = 170/862, baseline = 0.5491, acc = 0.6893
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 38, n_samples = 165/862, baseline = 0.5452, acc = 0.6743
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 39, n_samples = 174/862, baseline = 0.5465, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 40, n_samples = 165/862, baseline = 0.5567, acc = 0.6628
-- [u'Max D', 'Volume', 'Max_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 41, n_samples = 170/862, baseline = 0.5434, acc = 0.6777
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 42, n_samples = 181/862, baseline = 0.5521, acc = 0.6579
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 43, n_samples = 167/862, baseline = 0.5353, acc = 0.6619
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 44, n_samples = 175/862, baseline = 0.5517, acc = 0.6783
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 45, n_samples = 158/862, baseline = 0.5483, acc = 0.6676
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 46, n_samples = 191/862, baseline = 0.5604, acc = 0.6930
-- ['Age', u'Max D', 'Volume', u'Draining_Vein_Depth', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 47, n_samples = 175/862, baseline = 0.5662, acc = 0.6856
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 48, n_samples = 191/862, baseline = 0.5499, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 49, n_samples = 173/862, baseline = 0.5443, acc = 0.6792
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 50, n_samples = 169/862, baseline = 0.5498, acc = 0.6912
-- ['Age', u'Max D', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 51, n_samples = 182/862, baseline = 0.5368, acc = 0.6794
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 52, n_samples = 188/862, baseline = 0.5608, acc = 0.6677
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 53, n_samples = 194/862, baseline = 0.5449, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 54, n_samples = 165/862, baseline = 0.5438, acc = 0.6844
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 55, n_samples = 148/862, baseline = 0.5462, acc = 0.6681
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 56, n_samples = 172/862, baseline = 0.5435, acc = 0.6899
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 57, n_samples = 177/862, baseline = 0.5533, acc = 0.6803
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 58, n_samples = 163/862, baseline = 0.5622, acc = 0.6624
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 59, n_samples = 166/862, baseline = 0.5517, acc = 0.6882
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 60, n_samples = 182/862, baseline = 0.5529, acc = 0.6912
-- ['Age', u'Max D', 'Volume', u'Embo', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 61, n_samples = 177/862, baseline = 0.5504, acc = 0.6964
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 62, n_samples = 182/862, baseline = 0.5544, acc = 0.6794
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 63, n_samples = 148/862, baseline = 0.5560, acc = 0.6709
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 64, n_samples = 149/862, baseline = 0.5568, acc = 0.6690
-- ['Age', u'SM', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 65, n_samples = 156/862, baseline = 0.5510, acc = 0.6856
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 66, n_samples = 197/862, baseline = 0.5489, acc = 0.6887
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 67, n_samples = 170/862, baseline = 0.5694, acc = 0.6590
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 68, n_samples = 153/862, baseline = 0.5472, acc = 0.6756
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 69, n_samples = 157/862, baseline = 0.5617, acc = 0.6879
-- ['Age', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 70, n_samples = 180/862, baseline = 0.5499, acc = 0.6701
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 71, n_samples = 174/862, baseline = 0.5567, acc = 0.6701
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 72, n_samples = 187/862, baseline = 0.5570, acc = 0.6815
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 73, n_samples = 164/862, baseline = 0.5587, acc = 0.6719
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 74, n_samples = 177/862, baseline = 0.5460, acc = 0.6876
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 75, n_samples = 168/862, baseline = 0.5447, acc = 0.6744
-- ['Age', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 76, n_samples = 160/862, baseline = 0.5413, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 77, n_samples = 193/862, baseline = 0.5531, acc = 0.6891
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 78, n_samples = 191/862, baseline = 0.5469, acc = 0.6721
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 79, n_samples = 163/862, baseline = 0.5594, acc = 0.6867
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 80, n_samples = 181/862, baseline = 0.5360, acc = 0.6608
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 81, n_samples = 162/862, baseline = 0.5386, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 82, n_samples = 152/862, baseline = 0.5408, acc = 0.6732
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 83, n_samples = 176/862, baseline = 0.5583, acc = 0.6735
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 84, n_samples = 171/862, baseline = 0.5412, acc = 0.6700
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 85, n_samples = 176/862, baseline = 0.5335, acc = 0.6720
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 86, n_samples = 182/862, baseline = 0.5368, acc = 0.6882
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 87, n_samples = 178/862, baseline = 0.5614, acc = 0.6944
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 88, n_samples = 177/862, baseline = 0.5693, acc = 0.6818
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 89, n_samples = 165/862, baseline = 0.5452, acc = 0.6614
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=False iter = 90, n_samples = 171/862, baseline = 0.5557, acc = 0.6802
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 91, n_samples = 141/862, baseline = 0.5479, acc = 0.6796
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 92, n_samples = 202/862, baseline = 0.5485, acc = 0.6727
-- [u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 93, n_samples = 170/862, baseline = 0.5607, acc = 0.6850
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 94, n_samples = 161/862, baseline = 0.5563, acc = 0.6876
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 95, n_samples = 170/862, baseline = 0.5549, acc = 0.6676
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=False iter = 96, n_samples = 176/862, baseline = 0.5525, acc = 0.6735
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 97, n_samples = 175/862, baseline = 0.5590, acc = 0.6812
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 98, n_samples = 159/862, baseline = 0.5533, acc = 0.6686
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=False iter = 99, n_samples = 152/862, baseline = 0.5606, acc = 0.6775
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 0, n_samples = 188/862, baseline = 0.5579, acc = 0.6884
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 1, n_samples = 182/862, baseline = 0.5662, acc = 0.6471
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 2, n_samples = 179/862, baseline = 0.5505, acc = 0.6823
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 3, n_samples = 183/862, baseline = 0.5420, acc = 0.6524
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 4, n_samples = 154/862, baseline = 0.5579, acc = 0.6780
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 5, n_samples = 182/862, baseline = 0.5588, acc = 0.6603
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 6, n_samples = 161/862, baseline = 0.5663, acc = 0.6790
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 7, n_samples = 168/862, baseline = 0.5490, acc = 0.6729
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 8, n_samples = 163/862, baseline = 0.5651, acc = 0.6595
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 9, n_samples = 172/862, baseline = 0.5565, acc = 0.6768
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 10, n_samples = 163/862, baseline = 0.5508, acc = 0.6738
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 11, n_samples = 179/862, baseline = 0.5505, acc = 0.6706
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 12, n_samples = 162/862, baseline = 0.5686, acc = 0.6486
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 13, n_samples = 156/862, baseline = 0.5467, acc = 0.6827
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 14, n_samples = 178/862, baseline = 0.5570, acc = 0.6827
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 15, n_samples = 181/862, baseline = 0.5389, acc = 0.6608
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 16, n_samples = 162/862, baseline = 0.5514, acc = 0.6743
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 17, n_samples = 152/862, baseline = 0.5521, acc = 0.6479
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 18, n_samples = 173/862, baseline = 0.5530, acc = 0.6734
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 19, n_samples = 184/862, baseline = 0.5413, acc = 0.6652
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 20, n_samples = 180/862, baseline = 0.5513, acc = 0.6877
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 21, n_samples = 187/862, baseline = 0.5600, acc = 0.6652
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 22, n_samples = 160/862, baseline = 0.5513, acc = 0.6610
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 23, n_samples = 157/862, baseline = 0.5475, acc = 0.6752
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 24, n_samples = 177/862, baseline = 0.5577, acc = 0.6730
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 25, n_samples = 199/862, baseline = 0.5656, acc = 0.6848
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 26, n_samples = 178/862, baseline = 0.5365, acc = 0.6696
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 27, n_samples = 156/862, baseline = 0.5482, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 28, n_samples = 157/862, baseline = 0.5489, acc = 0.6638
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 29, n_samples = 168/862, baseline = 0.5432, acc = 0.6844
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 30, n_samples = 184/862, baseline = 0.5531, acc = 0.6622
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 31, n_samples = 179/862, baseline = 0.5534, acc = 0.6691
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 32, n_samples = 189/862, baseline = 0.5438, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 33, n_samples = 170/862, baseline = 0.5405, acc = 0.6749
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 34, n_samples = 177/862, baseline = 0.5606, acc = 0.6715
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 35, n_samples = 171/862, baseline = 0.5412, acc = 0.6686
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 36, n_samples = 175/862, baseline = 0.5459, acc = 0.6798
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 37, n_samples = 165/862, baseline = 0.5524, acc = 0.6786
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 38, n_samples = 180/862, baseline = 0.5455, acc = 0.6804
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 39, n_samples = 179/862, baseline = 0.5593, acc = 0.6720
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 40, n_samples = 175/862, baseline = 0.5459, acc = 0.6870
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 41, n_samples = 168/862, baseline = 0.5490, acc = 0.6628
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 42, n_samples = 161/862, baseline = 0.5549, acc = 0.6690
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 43, n_samples = 166/862, baseline = 0.5546, acc = 0.6580
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 44, n_samples = 180/862, baseline = 0.5455, acc = 0.6657
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 45, n_samples = 166/862, baseline = 0.5474, acc = 0.6810
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 46, n_samples = 170/862, baseline = 0.5636, acc = 0.6590
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 47, n_samples = 181/862, baseline = 0.5683, acc = 0.6564
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 48, n_samples = 198/862, baseline = 0.5422, acc = 0.6732
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 49, n_samples = 179/862, baseline = 0.5256, acc = 0.6413
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 50, n_samples = 179/862, baseline = 0.5432, acc = 0.6691
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 51, n_samples = 177/862, baseline = 0.5664, acc = 0.6759
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 52, n_samples = 170/862, baseline = 0.5549, acc = 0.6590
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 53, n_samples = 186/862, baseline = 0.5370, acc = 0.6612
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 54, n_samples = 177/862, baseline = 0.5547, acc = 0.6774
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 55, n_samples = 174/862, baseline = 0.5640, acc = 0.6686
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 56, n_samples = 188/862, baseline = 0.5593, acc = 0.6899
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 57, n_samples = 197/862, baseline = 0.5398, acc = 0.6677
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 58, n_samples = 178/862, baseline = 0.5453, acc = 0.6769
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 59, n_samples = 188/862, baseline = 0.5445, acc = 0.6677
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 60, n_samples = 170/862, baseline = 0.5434, acc = 0.6691
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 61, n_samples = 176/862, baseline = 0.5539, acc = 0.6778
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 62, n_samples = 186/862, baseline = 0.5518, acc = 0.6849
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 63, n_samples = 170/862, baseline = 0.5592, acc = 0.6908
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 64, n_samples = 204/862, baseline = 0.5578, acc = 0.6672
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 65, n_samples = 177/862, baseline = 0.5591, acc = 0.6672
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 66, n_samples = 173/862, baseline = 0.5327, acc = 0.6647
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 67, n_samples = 194/862, baseline = 0.5494, acc = 0.6811
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 68, n_samples = 172/862, baseline = 0.5565, acc = 0.6739
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 69, n_samples = 178/862, baseline = 0.5468, acc = 0.6696
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 70, n_samples = 149/862, baseline = 0.5596, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 71, n_samples = 162/862, baseline = 0.5543, acc = 0.6857
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 72, n_samples = 170/862, baseline = 0.5592, acc = 0.6604
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 73, n_samples = 164/862, baseline = 0.5559, acc = 0.6619
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 74, n_samples = 162/862, baseline = 0.5414, acc = 0.6614
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 75, n_samples = 167/862, baseline = 0.5626, acc = 0.6878
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 76, n_samples = 165/862, baseline = 0.5466, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 77, n_samples = 162/862, baseline = 0.5571, acc = 0.6914
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 78, n_samples = 193/862, baseline = 0.5516, acc = 0.6771
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 79, n_samples = 159/862, baseline = 0.5605, acc = 0.6828
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 80, n_samples = 183/862, baseline = 0.5567, acc = 0.6598
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 81, n_samples = 169/862, baseline = 0.5570, acc = 0.6739
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 82, n_samples = 176/862, baseline = 0.5496, acc = 0.6691
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 83, n_samples = 161/862, baseline = 0.5492, acc = 0.6733
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 84, n_samples = 192/862, baseline = 0.5642, acc = 0.6746
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 85, n_samples = 185/862, baseline = 0.5510, acc = 0.6839
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 86, n_samples = 159/862, baseline = 0.5505, acc = 0.6757
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 87, n_samples = 207/862, baseline = 0.5664, acc = 0.6504
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 88, n_samples = 165/862, baseline = 0.5509, acc = 0.6514
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 89, n_samples = 174/862, baseline = 0.5465, acc = 0.6628
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 90, n_samples = 150/862, baseline = 0.5520, acc = 0.6742
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 91, n_samples = 153/862, baseline = 0.5529, acc = 0.6742
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 92, n_samples = 170/862, baseline = 0.5390, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 93, n_samples = 173/862, baseline = 0.5559, acc = 0.6981
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 94, n_samples = 170/862, baseline = 0.5520, acc = 0.6850
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 95, n_samples = 174/862, baseline = 0.5523, acc = 0.6642
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 96, n_samples = 171/862, baseline = 0.5630, acc = 0.6570
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 97, n_samples = 167/862, baseline = 0.5482, acc = 0.6863
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0200, intercept=True iter = 98, n_samples = 173/862, baseline = 0.5457, acc = 0.6618
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0200, intercept=True iter = 99, n_samples = 163/862, baseline = 0.5522, acc = 0.6838
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 0, n_samples = 175/862, baseline = 0.5531, acc = 0.6739
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 1, n_samples = 170/862, baseline = 0.5448, acc = 0.6720
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 2, n_samples = 191/862, baseline = 0.5440, acc = 0.6632
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 3, n_samples = 163/862, baseline = 0.5536, acc = 0.6795
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 4, n_samples = 158/862, baseline = 0.5440, acc = 0.6747
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 5, n_samples = 169/862, baseline = 0.5743, acc = 0.6465
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 6, n_samples = 180/862, baseline = 0.5601, acc = 0.6672
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 7, n_samples = 184/862, baseline = 0.5546, acc = 0.6726
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 8, n_samples = 153/862, baseline = 0.5571, acc = 0.6756
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 9, n_samples = 169/862, baseline = 0.5397, acc = 0.6753
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 10, n_samples = 181/862, baseline = 0.5536, acc = 0.6725
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 11, n_samples = 183/862, baseline = 0.5582, acc = 0.6878
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 12, n_samples = 178/862, baseline = 0.5570, acc = 0.6813
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 13, n_samples = 178/862, baseline = 0.5380, acc = 0.6623
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 14, n_samples = 183/862, baseline = 0.5611, acc = 0.6922
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 15, n_samples = 187/862, baseline = 0.5407, acc = 0.6667
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 16, n_samples = 169/862, baseline = 0.5469, acc = 0.6724
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 17, n_samples = 137/862, baseline = 0.5490, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 18, n_samples = 178/862, baseline = 0.5570, acc = 0.6769
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 19, n_samples = 163/862, baseline = 0.5680, acc = 0.6481
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 20, n_samples = 198/862, baseline = 0.5392, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 21, n_samples = 173/862, baseline = 0.5472, acc = 0.6807
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 22, n_samples = 165/862, baseline = 0.5638, acc = 0.6858
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 23, n_samples = 166/862, baseline = 0.5503, acc = 0.6825
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 24, n_samples = 179/862, baseline = 0.5417, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 25, n_samples = 187/862, baseline = 0.5496, acc = 0.6696
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 26, n_samples = 179/862, baseline = 0.5490, acc = 0.6764
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 27, n_samples = 177/862, baseline = 0.5474, acc = 0.6555
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 28, n_samples = 166/862, baseline = 0.5589, acc = 0.6868
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 29, n_samples = 172/862, baseline = 0.5536, acc = 0.6565
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 30, n_samples = 160/862, baseline = 0.5484, acc = 0.6752
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 31, n_samples = 183/862, baseline = 0.5449, acc = 0.6627
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 32, n_samples = 182/862, baseline = 0.5515, acc = 0.6779
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 33, n_samples = 148/862, baseline = 0.5364, acc = 0.6653
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 34, n_samples = 180/862, baseline = 0.5513, acc = 0.6818
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 35, n_samples = 188/862, baseline = 0.5490, acc = 0.6825
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 36, n_samples = 182/862, baseline = 0.5544, acc = 0.6868
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 37, n_samples = 176/862, baseline = 0.5394, acc = 0.6647
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 38, n_samples = 178/862, baseline = 0.5526, acc = 0.6652
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 39, n_samples = 169/862, baseline = 0.5584, acc = 0.6869
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 40, n_samples = 165/862, baseline = 0.5567, acc = 0.6657
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 41, n_samples = 150/862, baseline = 0.5520, acc = 0.6868
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 42, n_samples = 190/862, baseline = 0.5461, acc = 0.6771
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 43, n_samples = 167/862, baseline = 0.5525, acc = 0.6734
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 44, n_samples = 165/862, baseline = 0.5395, acc = 0.6628
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 45, n_samples = 168/862, baseline = 0.5476, acc = 0.6859
-- ['Age', u'Max D', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 46, n_samples = 161/862, baseline = 0.5407, acc = 0.6548
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 47, n_samples = 172/862, baseline = 0.5565, acc = 0.6812
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 48, n_samples = 192/862, baseline = 0.5537, acc = 0.6731
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 49, n_samples = 190/862, baseline = 0.5655, acc = 0.6548
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 50, n_samples = 198/862, baseline = 0.5497, acc = 0.6792
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 51, n_samples = 171/862, baseline = 0.5456, acc = 0.6686
-- [u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 52, n_samples = 185/862, baseline = 0.5510, acc = 0.6987
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 53, n_samples = 165/862, baseline = 0.5438, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 54, n_samples = 175/862, baseline = 0.5546, acc = 0.6856
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 55, n_samples = 184/862, baseline = 0.5634, acc = 0.6696
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 56, n_samples = 158/862, baseline = 0.5483, acc = 0.6747
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 57, n_samples = 174/862, baseline = 0.5567, acc = 0.6919
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 58, n_samples = 201/862, baseline = 0.5507, acc = 0.6717
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 59, n_samples = 183/862, baseline = 0.5493, acc = 0.6760
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 60, n_samples = 190/862, baseline = 0.5491, acc = 0.6905
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 61, n_samples = 195/862, baseline = 0.5337, acc = 0.6672
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 62, n_samples = 191/862, baseline = 0.5559, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 63, n_samples = 191/862, baseline = 0.5484, acc = 0.6781
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 64, n_samples = 169/862, baseline = 0.5483, acc = 0.6724
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 65, n_samples = 182/862, baseline = 0.5485, acc = 0.6882
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 66, n_samples = 158/862, baseline = 0.5483, acc = 0.6847
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 67, n_samples = 176/862, baseline = 0.5423, acc = 0.6691
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 68, n_samples = 154/862, baseline = 0.5607, acc = 0.6653
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 69, n_samples = 174/862, baseline = 0.5596, acc = 0.6730
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 70, n_samples = 164/862, baseline = 0.5774, acc = 0.6633
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 71, n_samples = 182/862, baseline = 0.5324, acc = 0.6662
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 72, n_samples = 178/862, baseline = 0.5658, acc = 0.6798
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 73, n_samples = 178/862, baseline = 0.5541, acc = 0.6886
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 74, n_samples = 159/862, baseline = 0.5633, acc = 0.6771
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 75, n_samples = 180/862, baseline = 0.5630, acc = 0.6833
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 76, n_samples = 181/862, baseline = 0.5448, acc = 0.6769
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 77, n_samples = 163/862, baseline = 0.5379, acc = 0.6495
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 78, n_samples = 163/862, baseline = 0.5494, acc = 0.6581
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 79, n_samples = 174/862, baseline = 0.5422, acc = 0.6686
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 80, n_samples = 176/862, baseline = 0.5496, acc = 0.6880
-- [u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 81, n_samples = 144/862, baseline = 0.5585, acc = 0.6713
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 82, n_samples = 176/862, baseline = 0.5466, acc = 0.6297
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 83, n_samples = 170/862, baseline = 0.5578, acc = 0.6676
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 84, n_samples = 152/862, baseline = 0.5592, acc = 0.6648
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 85, n_samples = 176/862, baseline = 0.5394, acc = 0.6647
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 86, n_samples = 176/862, baseline = 0.5569, acc = 0.6647
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 87, n_samples = 185/862, baseline = 0.5465, acc = 0.6558
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 88, n_samples = 192/862, baseline = 0.5448, acc = 0.6687
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0400, intercept=True iter = 89, n_samples = 145/862, baseline = 0.5537, acc = 0.6862
-- ['Age', u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 90, n_samples = 174/862, baseline = 0.5581, acc = 0.6788
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 91, n_samples = 172/862, baseline = 0.5507, acc = 0.6855
-- [u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 92, n_samples = 174/862, baseline = 0.5392, acc = 0.6788
-- [u'Max D', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 93, n_samples = 170/862, baseline = 0.5462, acc = 0.6777
-- ['Age', u'Max D', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 94, n_samples = 170/862, baseline = 0.5506, acc = 0.6749
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 95, n_samples = 182/862, baseline = 0.5529, acc = 0.6779
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 96, n_samples = 181/862, baseline = 0.5477, acc = 0.6843
-- [u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 97, n_samples = 172/862, baseline = 0.5493, acc = 0.6754
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0400, intercept=True iter = 98, n_samples = 169/862, baseline = 0.5440, acc = 0.6999
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0400, intercept=True iter = 99, n_samples = 172/862, baseline = 0.5565, acc = 0.6826
-- [u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 0, n_samples = 158/862, baseline = 0.5540, acc = 0.7017
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 1, n_samples = 171/862, baseline = 0.5456, acc = 0.6570
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 2, n_samples = 166/862, baseline = 0.5647, acc = 0.6552
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 3, n_samples = 170/862, baseline = 0.5231, acc = 0.6460
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 4, n_samples = 174/862, baseline = 0.5581, acc = 0.6846
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 5, n_samples = 175/862, baseline = 0.5269, acc = 0.6230
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 6, n_samples = 171/862, baseline = 0.5499, acc = 0.6961
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 7, n_samples = 159/862, baseline = 0.5647, acc = 0.6757
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 8, n_samples = 162/862, baseline = 0.5371, acc = 0.6814
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 9, n_samples = 192/862, baseline = 0.5567, acc = 0.6761
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 10, n_samples = 152/862, baseline = 0.5521, acc = 0.6930
-- [u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 11, n_samples = 190/862, baseline = 0.5446, acc = 0.6875
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 12, n_samples = 173/862, baseline = 0.5486, acc = 0.6778
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 13, n_samples = 201/862, baseline = 0.5537, acc = 0.6732
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 14, n_samples = 185/862, baseline = 0.5510, acc = 0.6795
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 15, n_samples = 163/862, baseline = 0.5565, acc = 0.6924
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 16, n_samples = 161/862, baseline = 0.5521, acc = 0.6890
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 17, n_samples = 173/862, baseline = 0.5399, acc = 0.6546
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 18, n_samples = 145/862, baseline = 0.5356, acc = 0.6750
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 19, n_samples = 165/862, baseline = 0.5495, acc = 0.6714
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 20, n_samples = 194/862, baseline = 0.5494, acc = 0.6841
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 21, n_samples = 169/862, baseline = 0.5440, acc = 0.6681
-- ['Age', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 22, n_samples = 180/862, baseline = 0.5484, acc = 0.6921
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 23, n_samples = 162/862, baseline = 0.5543, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 24, n_samples = 164/862, baseline = 0.5616, acc = 0.6734
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 25, n_samples = 171/862, baseline = 0.5499, acc = 0.6700
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 26, n_samples = 171/862, baseline = 0.5499, acc = 0.6860
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 27, n_samples = 167/862, baseline = 0.5453, acc = 0.6849
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 28, n_samples = 179/862, baseline = 0.5578, acc = 0.6837
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 29, n_samples = 161/862, baseline = 0.5549, acc = 0.6676
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 30, n_samples = 160/862, baseline = 0.5456, acc = 0.6795
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 31, n_samples = 180/862, baseline = 0.5513, acc = 0.6745
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 32, n_samples = 161/862, baseline = 0.5578, acc = 0.6619
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 33, n_samples = 194/862, baseline = 0.5494, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 34, n_samples = 178/862, baseline = 0.5687, acc = 0.6769
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 35, n_samples = 160/862, baseline = 0.5627, acc = 0.6966
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 36, n_samples = 175/862, baseline = 0.5459, acc = 0.6914
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 37, n_samples = 176/862, baseline = 0.5452, acc = 0.6531
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 38, n_samples = 172/862, baseline = 0.5580, acc = 0.6768
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 39, n_samples = 178/862, baseline = 0.5614, acc = 0.6711
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 40, n_samples = 181/862, baseline = 0.5389, acc = 0.6872
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 41, n_samples = 189/862, baseline = 0.5646, acc = 0.6790
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 42, n_samples = 173/862, baseline = 0.5675, acc = 0.6589
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 43, n_samples = 195/862, baseline = 0.5622, acc = 0.6897
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 44, n_samples = 165/862, baseline = 0.5538, acc = 0.6958
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 45, n_samples = 166/862, baseline = 0.5431, acc = 0.6782
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 46, n_samples = 154/862, baseline = 0.5508, acc = 0.6935
-- [u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 47, n_samples = 195/862, baseline = 0.5412, acc = 0.6762
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 48, n_samples = 172/862, baseline = 0.5536, acc = 0.6739
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 49, n_samples = 161/862, baseline = 0.5478, acc = 0.6819
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 50, n_samples = 181/862, baseline = 0.5492, acc = 0.6725
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 51, n_samples = 198/862, baseline = 0.5331, acc = 0.6717
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 52, n_samples = 167/862, baseline = 0.5410, acc = 0.6921
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 53, n_samples = 183/862, baseline = 0.5523, acc = 0.6745
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 54, n_samples = 167/862, baseline = 0.5525, acc = 0.6518
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 55, n_samples = 161/862, baseline = 0.5464, acc = 0.6790
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 56, n_samples = 171/862, baseline = 0.5485, acc = 0.6961
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 57, n_samples = 165/862, baseline = 0.5466, acc = 0.6628
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 58, n_samples = 191/862, baseline = 0.5589, acc = 0.6841
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 59, n_samples = 194/862, baseline = 0.5509, acc = 0.6722
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 60, n_samples = 160/862, baseline = 0.5484, acc = 0.6781
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 61, n_samples = 180/862, baseline = 0.5499, acc = 0.6804
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 62, n_samples = 170/862, baseline = 0.5462, acc = 0.6864
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 63, n_samples = 180/862, baseline = 0.5440, acc = 0.6701
-- ['Age', u'Max D', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 64, n_samples = 165/862, baseline = 0.5552, acc = 0.7016
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 65, n_samples = 167/862, baseline = 0.5568, acc = 0.6719
-- ['Age', u'SM', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 66, n_samples = 166/862, baseline = 0.5589, acc = 0.6624
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 67, n_samples = 167/862, baseline = 0.5453, acc = 0.6734
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 68, n_samples = 173/862, baseline = 0.5501, acc = 0.6894
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 69, n_samples = 183/862, baseline = 0.5538, acc = 0.6804
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 70, n_samples = 156/862, baseline = 0.5623, acc = 0.6827
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 71, n_samples = 169/862, baseline = 0.5584, acc = 0.6710
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 72, n_samples = 191/862, baseline = 0.5559, acc = 0.6811
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 73, n_samples = 171/862, baseline = 0.5572, acc = 0.6643
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 74, n_samples = 188/862, baseline = 0.5653, acc = 0.6973
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 75, n_samples = 192/862, baseline = 0.5537, acc = 0.6687
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 76, n_samples = 185/862, baseline = 0.5569, acc = 0.6750
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 77, n_samples = 165/862, baseline = 0.5438, acc = 0.6758
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 78, n_samples = 175/862, baseline = 0.5531, acc = 0.6739
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 79, n_samples = 172/862, baseline = 0.5449, acc = 0.6739
-- ['Age', u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 80, n_samples = 156/862, baseline = 0.5524, acc = 0.6969
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 81, n_samples = 155/862, baseline = 0.5502, acc = 0.6676
-- ['Age', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 82, n_samples = 180/862, baseline = 0.5323, acc = 0.6657
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 83, n_samples = 187/862, baseline = 0.5452, acc = 0.6741
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 84, n_samples = 168/862, baseline = 0.5490, acc = 0.6931
-- ['Age', u'SM', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 85, n_samples = 163/862, baseline = 0.5479, acc = 0.6753
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 86, n_samples = 182/862, baseline = 0.5588, acc = 0.6515
-- ['Age', u'SM', u'Max D', 'Max_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 87, n_samples = 158/862, baseline = 0.5511, acc = 0.6705
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 88, n_samples = 182/862, baseline = 0.5456, acc = 0.7015
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 89, n_samples = 185/862, baseline = 0.5598, acc = 0.6928
-- ['Age', u'Max D', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 90, n_samples = 179/862, baseline = 0.5520, acc = 0.6867
-- ['Age', u'Max D', 'Volume', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 91, n_samples = 172/862, baseline = 0.5507, acc = 0.6551
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 92, n_samples = 168/862, baseline = 0.5706, acc = 0.6499
-- ['Age', u'Max D', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 93, n_samples = 161/862, baseline = 0.5464, acc = 0.6805
-- ['Age', u'Max D', 'Volume', 'Max_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 94, n_samples = 189/862, baseline = 0.5572, acc = 0.6731
-- ['Age', u'Max D', 'Volume', 'Max_Dose']
LogisticRegression: C = 0.0800, intercept=True iter = 95, n_samples = 157/862, baseline = 0.5532, acc = 0.6780
-- ['Age', u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose', u'Shots']
LogisticRegression: C = 0.0800, intercept=True iter = 96, n_samples = 181/862, baseline = 0.5345, acc = 0.6579
-- [u'Max D', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 97, n_samples = 163/862, baseline = 0.5536, acc = 0.6896
-- [u'Max D', 'Volume', 'Number_Draining_Veins', 'Max_Dose', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 98, n_samples = 162/862, baseline = 0.5500, acc = 0.6800
-- ['Age', u'Max D', 'Volume', 'Marginal_Dose', u'Isodose']
LogisticRegression: C = 0.0800, intercept=True iter = 99, n_samples = 178/862, baseline = 0.5453, acc = 0.6871
-- [u'Max D', 'Marginal_Dose']
Counter({u'Max D': 3595, 'Max_Dose': 3251, 'Age': 3116, u'Isodose': 2795, 'Volume': 2683, 'Marginal_Dose': 2403, 'Number_Draining_Veins': 1467, u'Shots': 1313, u'Embo': 1041, u'SM': 685, 'Early_RIC': 468, 'Aneurysm': 389, u'Draining_Vein_Depth': 233, u'Sex': 212, 'History_of_Hemorrhage': 122})

In [14]:
np.save("X.npy", X)

In [15]:
np.save("Y_RIC.npy", Y_RIC)

In [242]:
np.save("Y_Obliteration", Y_Obliteration)

In [ ]:
"""
        grid_search = GridSearchCV(Normalizer(model), param_grids, scoring=roc_auc)
        grid_search.fit(X_train, Y_train)
        print "Best model", grid_search.best_estimator_
        print "Best model score", grid_search.best_score_
        print 
        curr_models[model] = grid_search.best_estimator_
    

    # shuffle the training indices since they come to us sorted
    np.random.shuffle(train_idx)
    
    # split the training indices into model fitting/validation 
    # subsets
    model_selection_idx = train_idx[:-n_cv_validation]
    model_validation_idx = train_idx[-n_cv_validation:]
    
    print " -- # selection train", len(model_selection_idx)
    print " -- # validation train", len(model_validation_idx)
    
    print "-- Using subset of training to choose best model"
    
    X_model_selection = X[model_selection_idx, :]
    Y_model_selection = Y_Obliteration[model_selection_idx]
    print "Y_model_selection.shape", Y_model_selection.shape, Y_model_selection.dtype
    X_model_validation = X[model_validation_idx, :]
    Y_model_validation = Y_Obliteration[model_validation_idx]
    print "Y_model_validation", Y_model_validation.shape, Y_model_validation.dtype
    
     # normalize model selection & validation features
    X_model_selection, X_model_validation = normalize(X_model_selection, X_model_validation)
    
    best_auc = 0
    best_model = None
    for model in models:
        print 
        print model
        model.fit(X_model_selection, Y_model_selection)
        pred = class_prob(model, X_model_validation)
        auc = roc_auc_score(Y_model_validation, pred)
        
        print "--", auc
        if auc > best_auc:
            best_auc = auc
            best_model = model
    
    # once we've found the best model via selection/validation sets
    # evaluate it on the held-out CV test set
    X_train, X_test = normalize(X_train, X_test)
    best_model.fit(X_train, Y_train)
    pred = class_prob(best_model, X_test)
    cv_auc = roc_auc_score(Y_test, pred)
    print
    print "== Best model in CV-fold:"
    print best_model
    print "== CV-fold AUC score for best model:", cv_auc
    cv_aucs.append(cv_auc)
    best_models.append(best_model)

for model, auc in zip(best_models, cv_aucs):
    print model
    print auc
    print 
    
print cv_aucs
print "mean AUC", np.mean(cv_aucs)
print "median AUC", np.median(cv_aucs)
print "std AUC", np.std(cv_aucs)
"""