In [70]:
library(data.table)
library(viridis)


Loading required package: viridisLite

In [12]:
library(fmsb)

In [13]:
library(ggplot2)

In [14]:
longitudinal_edits <- read.table("../../../results/misalignment_and_edits_3_22_18_post_processed.txt", header=TRUE, sep="\t")

In [67]:
longitudinal_edits$month = 1:56
head(longitudinal_edits, n=60)


yyyymmaligned_entitiesdifference_in_alignment_with_previousbot_editsemi_automated_edithuman_editanon_editsemi_automated_bot_like_edithuman_bot_like_editanon_bot_like_editbot_edit_propsemi_automated_bot_like_edit_prophuman_bot_like_edit_propanon_bot_like_edit_prophuman_non_bot_like_edit_propanon_non_bot_like_edit_propsemi_automated_non_bot_like_edit_propsemi_automated_edit_prophuman_bot_like_over_human_edit_propmonth
201212 0.8462165 0.086653667 183629 26107 152206 2080 0 53 0 0.5044448 0.000000e+001.455956e-040.000000e+000.41797748 0.00571394047.171819e-027.171819e-023.482123e-04 1
201301 0.9062631 0.060046553 1932349 23754 155913 1799 0 15448 0 0.9141524 0.000000e+007.308114e-030.000000e+000.06645094 0.00085106791.123750e-021.123750e-029.908090e-02 2
201302 0.8983001 -0.007962983 2284978 7618 169359 1883 2 1273 0 0.9274059 8.117417e-075.166736e-040.000000e+000.06822121 0.00076425483.091112e-033.091924e-037.516577e-03 3
201303 0.9025090 0.004208913 2205789 5990 312198 4450 0 2023 0 0.8723958 0.000000e+008.001022e-040.000000e+000.12267509 0.00175998752.369062e-032.369062e-036.479862e-03 4
201304 0.8964184 -0.006090571 7658293 8139 682448 13228 0 2716 0 0.9158328 0.000000e+003.247985e-040.000000e+000.08128716 0.00158189789.733192e-049.733192e-043.979790e-03 5
201305 0.8769229 -0.01949549012632785 5 553463 20909 0 6326 7 0.9565102 0.000000e+004.789825e-045.300155e-070.04142730 0.00158262623.785825e-073.785825e-071.142985e-02 6
201306 0.8388038 -0.03811909213891738 12 677088 18998 0 4825 0 0.9522823 0.000000e+003.307550e-040.000000e+000.04608381 0.00130231798.226032e-078.226032e-077.126105e-03 7
201307 0.8244444 -0.014359441 3646067 14 600203 36230 0 773 6947 0.8513847 0.000000e+001.805015e-041.622178e-030.13997152 0.00683780603.269108e-063.269108e-061.287898e-03 8
201308 0.8256896 0.001245236 8239069 8 481696 15502 0 332 1 0.9430872 0.000000e+003.800247e-051.144653e-070.05509946 0.00177432609.157221e-079.157221e-076.892314e-04 9
201309 0.8254115 -0.000278120 4002577 5049 549303 12707 0 14621 0 0.8759072 0.000000e+003.199598e-030.000000e+000.11700757 0.00278074671.104902e-031.104902e-032.661737e-0210
201310 0.8053949 -0.020016620 5009383 16392 553816 16059 145 17648 704 0.8952281 2.591299e-053.153878e-031.258120e-040.09581872 0.00274409592.903505e-032.929418e-033.186618e-0211
201311 0.7880156 -0.017379243 8329407 15911 325733 16016 30 3905 0 0.9588285 3.453410e-064.495188e-040.000000e+000.03704680 0.00184366021.828120e-031.831573e-031.198835e-0212
201312 0.7777810 -0.010234676 6524608 25161 655333 14126 236 1151 0 0.9037820 3.269048e-051.594353e-040.000000e+000.09061661 0.00195671893.452585e-033.485276e-031.756359e-0313
201401 0.7743517 -0.003429302 5552094 85771 517462 9814 11 670 15 0.9005624 1.784225e-061.086755e-042.433034e-060.08382485 0.00158942031.391047e-021.391225e-021.294781e-0314
201402 0.7701717 -0.004179954 8093590 119858 503142 11126 27729 9 16 0.9273434 3.177120e-031.031198e-061.833240e-060.05764773 0.00127295621.055591e-021.373303e-021.788759e-0515
201403 0.7603903 -0.009781380 4911802 148893 472179 19090 1291 1267 3 0.8846963 2.325303e-042.282075e-045.403493e-070.08481899 0.00343788252.658555e-022.681808e-022.683304e-0316
201404 0.7093746 -0.051015775 4679578 158048 352842 21690 1367 708 1369 0.8978197 2.622714e-041.358363e-042.626551e-040.06756012 0.00389876903.006068e-023.032295e-022.006564e-0317
201405 0.7128619 0.003487368 4191296 438638 363230 20036 6335 673 16 0.8360520 1.263664e-031.342456e-043.191574e-060.07232047 0.00399345738.623295e-028.749661e-021.852821e-0318
201406 0.6964598 -0.016402154 9204208 979963 385119 28909 7075 4868 0 0.8684691 6.675663e-044.593233e-040.000000e+000.03587883 0.00272772769.179748e-029.246505e-021.264025e-0219
201407 0.6910405 -0.005419249 4137442 1122558 374054 20569 14826 471 0 0.7316919 2.621925e-038.329468e-050.000000e+000.06606683 0.00363755461.958985e-011.985204e-011.259176e-0320
201408 0.6790128 -0.012027700 3841529 1542154 463427 24487 12372 5091 0 0.6542562 2.107093e-038.670554e-040.000000e+000.07805985 0.00417041562.605393e-012.626464e-011.098555e-0221
201409 0.6425853 -0.036427522 3203817 1131224 443472 21464 1297 5138 0 0.6674651 2.702096e-041.070422e-030.000000e+000.09132002 0.00447168812.354026e-012.356728e-011.158585e-0222
201410 0.6196022 -0.022983148 3227864 1145195 490299 28462 13839 9068 0 0.6598493 2.829008e-031.853707e-030.000000e+000.09837463 0.00581828442.312751e-012.341041e-011.849484e-0223
201411 0.6049853 -0.014616809 6302182 1325029 392051 22689 3077 3819 0 0.7836633 3.826186e-044.748848e-040.000000e+000.04827585 0.00282133031.643820e-011.647646e-019.741080e-0324
201412 0.5866415 -0.018343843 6485558 890292 422950 43950 914 20633 2210 0.8269495 1.165408e-042.630837e-032.817889e-040.05129795 0.00532211281.134013e-011.135178e-014.878354e-0225
201501 0.5762690 -0.010372485 4739487 805057 424032 24808 1018 2155 1 0.7907865 1.698540e-043.595631e-041.668506e-070.07039045 0.00413906401.341544e-011.343243e-015.082164e-0326
201502 0.5655679 -0.010701104 4325628 945894 496314 26183 9981 167 0 0.7465678 1.722638e-032.882283e-050.000000e+000.08563089 0.00451897031.615309e-011.632535e-013.364805e-0427
201503 0.5460412 -0.019526750 3597820 856295 537678 21459 30219 376 0 0.7176619 6.027824e-037.500122e-050.000000e+000.10717634 0.00428045511.647785e-011.708063e-016.993033e-0428
201504 0.5321438 -0.013897348 4870233 918356 531767 25951 7464 40948 0 0.7674121 1.176117e-036.452256e-030.000000e+000.07733931 0.00408914981.435310e-011.447072e-017.700365e-0229
201505 0.5210429 -0.011100891 2488601 1680846 477852 20413 99343 11544 2 0.5331522 2.128302e-022.473160e-034.284755e-070.09990077 0.00437280623.388176e-013.601006e-012.415811e-0230
201506 0.5164983 -0.004544615 5021818 978633 491582 26473 25174 1689 37 0.7703940 3.861928e-032.591085e-045.676147e-060.07515418 0.00405553051.462696e-011.501315e-013.435846e-0331
201507 0.5284056 0.011907284 2362031 808189 596225 17319 4396 2808 1 0.6242543 1.161806e-037.421182e-042.642871e-070.15683246 0.00457692392.124321e-012.135939e-014.709631e-0332
201508 0.5119938 -0.01641181610651414 626137 569214 24237 10199 22 7 0.8972633 8.591524e-041.853256e-065.896722e-070.04794810 0.00204110825.188593e-025.274508e-023.864979e-0533
201509 0.5083907 -0.003603063 5998275 922978 566829 20643 4545 678 46 0.7988407 6.052958e-049.029496e-056.126207e-060.07539909 0.00274307561.223154e-011.229207e-011.196128e-0334
201510 0.4997726 -0.008618152 4955485 704560 549578 21198 20407 33 7 0.7953181 3.275170e-035.296252e-061.123447e-060.08819785 0.00340099641.098014e-011.130766e-016.004607e-0535
201511 0.4885873 -0.011185294 8338012 1525937 615665 39885 52236 1629 5 0.7926244 4.965636e-031.548553e-044.753078e-070.05837122 0.00379105511.400923e-011.450580e-012.645919e-0336
201512 0.4832378 -0.005349461 6780962 2113700 709149 43685 42498 2327 4728 0.7028727 4.405081e-032.412025e-044.900754e-040.07326481 0.00403804262.146880e-012.190931e-013.281398e-0337
201601 0.4830095 -0.000228354 4753096 2834920 597301 49508 242577 221 3 0.5771945 2.945746e-022.683724e-053.643065e-070.07250670 0.00601166393.148024e-013.442599e-013.699977e-0438
201602 0.4844902 0.001480786 5037443 3503742 710388 36601 103807 1544 605 0.5423502 1.117625e-021.662329e-046.513659e-050.07631683 0.00387546573.660499e-013.772261e-012.173460e-0339
201603 0.4945400 0.010049712 5124456 3004104 623005 45217 122240 78 35 0.5825376 1.389599e-028.866879e-063.978728e-060.07081305 0.00513619643.276043e-013.415003e-011.251996e-0440
201604 0.4929242 -0.001615786 3288373 2551455 681104 53920 100350 2317 943 0.5001440 1.526270e-023.524034e-041.434253e-040.10323989 0.00805751983.728000e-013.880627e-013.401830e-0341
201605 0.4836949 -0.009229247 6498847 1699375 888070 74766 182273 151910 0 0.7093992 1.989650e-021.658215e-020.000000e+000.08035753 0.00816128441.656034e-011.854999e-011.710563e-0142
201606 0.4741030 -0.009591949 8942040 1920279 933300 25110 111371 97117 32 0.7564711 9.421669e-038.215822e-032.707109e-060.07073870 0.00212152741.530285e-011.624501e-011.040576e-0143
201607 0.4728511 -0.001251919 3220427 2701252 800596 19184 129617 10045 16 0.4777048 1.922685e-021.490034e-032.373373e-060.11726705 0.00284330143.814656e-014.006925e-011.254690e-0244
201608 0.4896451 0.016794007 4222043 1908414 808776 19100 115306 75690 0 0.6067607 1.657092e-021.087761e-020.000000e+000.10535368 0.00274491032.576922e-012.742631e-019.358586e-0245
201609 0.4864085 -0.003236607 3659346 2206167 784122 47599 213173 15631 0 0.5463966 3.183001e-022.333949e-030.000000e+000.11474752 0.00710726252.975846e-013.294147e-011.993440e-0246
201610 0.4873130 0.000904583 3057192 2945595 791369 27418 41720 4434 0 0.4481652 6.115891e-036.499966e-040.000000e+000.11535974 0.00401930704.256899e-014.318058e-015.602949e-0347
201611 0.4854145 -0.001898554 6126002 3805594 871958 32575 87958 100 0 0.5653312 8.117105e-039.228388e-060.000000e+000.08045844 0.00300614733.430779e-013.511950e-011.146844e-0448
201612 0.4846416 -0.000772895 2788117 2256563 745482 27702 107895 20963 0 0.4792338 1.854547e-023.603212e-030.000000e+000.12453351 0.00476154133.693225e-013.878680e-012.812006e-0249
201701 0.4758655 -0.008776076 2205598 3143946 793066 26228 43700 916 8 0.3575386 7.083992e-031.484883e-041.296841e-060.12841154 0.00425039535.025656e-015.096496e-011.155011e-0350
201702 0.4760932 0.000227658 2820143 2114626 916649 36771 251621 10424 0 0.4789491 4.273317e-021.770324e-030.000000e+000.15390556 0.00624487433.163969e-013.591301e-011.137186e-0251
201703 0.4577122 -0.018380951 7979381 3745192 856575 43399 177145 21087 0 0.6320529 1.403179e-021.670317e-030.000000e+000.06617964 0.00343766792.826277e-012.966595e-012.461781e-0252
201704 0.4572040 -0.000508208 6906938 2706050 892770 42338 197731 12564 0 0.6548042 1.874566e-021.191115e-030.000000e+000.08344691 0.00401380502.377983e-012.565439e-011.407305e-0253
201705 0.4443325 -0.012871497 2959014 1521610 897744 33731 88571 34698 0 0.5467406 1.636537e-026.411191e-030.000000e+000.15946604 0.00623251722.647843e-012.811497e-013.865022e-0254

In [16]:
longitudinal_edits$human_non_bot_like_edit = longitudinal_edits$human_edit - longitudinal_edits$human_bot_like_edit;
longitudinal_edits$anon_non_bot_like_edit = longitudinal_edits$anon_edit - longitudinal_edits$anon_bot_like_edit;
longitudinal_edits$semi_automated_non_bot_like_edit = longitudinal_edits$semi_automated_edit - longitudinal_edits$semi_automated_bot_like_edit;

longitudinal_edits$total_edits = longitudinal_edits$bot_edit + longitudinal_edits$semi_automated_edit + longitudinal_edits$human_edit + longitudinal_edits$anon_edit

longitudinal_edits$bot_edit_prop = longitudinal_edits$bot_edit / longitudinal_edits$total_edits
longitudinal_edits$semi_automated_bot_like_edit_prop = longitudinal_edits$semi_automated_bot_like_edit / longitudinal_edits$total_edits
longitudinal_edits$human_bot_like_edit_prop = longitudinal_edits$human_bot_like_edit / longitudinal_edits$total_edits
longitudinal_edits$anon_bot_like_edit_prop = longitudinal_edits$anon_bot_like_edit / longitudinal_edits$total_edits
longitudinal_edits$human_non_bot_like_edit_prop = longitudinal_edits$human_non_bot_like_edit / longitudinal_edits$total_edits
longitudinal_edits$anon_non_bot_like_edit_prop = longitudinal_edits$anon_non_bot_like_edit / longitudinal_edits$total_edits
longitudinal_edits$semi_automated_non_bot_like_edit_prop = longitudinal_edits$semi_automated_non_bot_like_edit / longitudinal_edits$total_edits

longitudinal_edits$semi_automated_edit_prop = longitudinal_edits$semi_automated_edit / longitudinal_edits$total_edits

longitudinal_edits$human_bot_like_over_human_edit_prop = longitudinal_edits$human_bot_like_edit / longitudinal_edits$human_edit

In [73]:
longitudinal_edits_semi_automated_edits = data.table(longitudinal_edits$semi_automated_edit)
longitudinal_edits_bot_edits = data.table(longitudinal_edits$semi_automated_edit)
longitudinal_edits_human_edits = data.table(longitudinal_edits$semi_automated_edit)
longitudinal_edits__edits = data.table(longitudinal_edits$semi_automated_edit)


longitudinal_edits_grouped_by_agent_type = data.table()
longitudinal_edits_grouped_by_agent_type$month = longitudinal_edits$month

In [72]:
ggplot(longitudinal_edits,
       aes(x=month, y=semi_automated_edit)) + geom_point() + 
ggtitle("Agent Type Edits Over Time") + geom_line() +
scale_color_viridis(discrete=TRUE)



In [17]:
head(longitudinal_edits, n=60)


yyyymmaligned_entitiesdifference_in_alignment_with_previousbot_editsemi_automated_edithuman_editanon_editsemi_automated_bot_like_edithuman_bot_like_editanon_bot_like_edittotal_editsbot_edit_propsemi_automated_bot_like_edit_prophuman_bot_like_edit_propanon_bot_like_edit_prophuman_non_bot_like_edit_propanon_non_bot_like_edit_propsemi_automated_non_bot_like_edit_propsemi_automated_edit_prophuman_bot_like_over_human_edit_prop
201212 0.8462165 0.086653667 183629 26107 152206 2080 0 53 0 364022 0.5044448 0.000000e+001.455956e-040.000000e+000.41797748 0.00571394047.171819e-027.171819e-023.482123e-04
201301 0.9062631 0.060046553 1932349 23754 155913 1799 0 15448 0 2113815 0.9141524 0.000000e+007.308114e-030.000000e+000.06645094 0.00085106791.123750e-021.123750e-029.908090e-02
201302 0.8983001 -0.007962983 2284978 7618 169359 1883 2 1273 0 2463838 0.9274059 8.117417e-075.166736e-040.000000e+000.06822121 0.00076425483.091112e-033.091924e-037.516577e-03
201303 0.9025090 0.004208913 2205789 5990 312198 4450 0 2023 0 2528427 0.8723958 0.000000e+008.001022e-040.000000e+000.12267509 0.00175998752.369062e-032.369062e-036.479862e-03
201304 0.8964184 -0.006090571 7658293 8139 682448 13228 0 2716 0 8362108 0.9158328 0.000000e+003.247985e-040.000000e+000.08128716 0.00158189789.733192e-049.733192e-043.979790e-03
201305 0.8769229 -0.01949549012632785 5 553463 20909 0 6326 7 13207162 0.9565102 0.000000e+004.789825e-045.300155e-070.04142730 0.00158262623.785825e-073.785825e-071.142985e-02
201306 0.8388038 -0.03811909213891738 12 677088 18998 0 4825 0 14587836 0.9522823 0.000000e+003.307550e-040.000000e+000.04608381 0.00130231798.226032e-078.226032e-077.126105e-03
201307 0.8244444 -0.014359441 3646067 14 600203 36230 0 773 6947 4282514 0.8513847 0.000000e+001.805015e-041.622178e-030.13997152 0.00683780603.269108e-063.269108e-061.287898e-03
201308 0.8256896 0.001245236 8239069 8 481696 15502 0 332 1 8736275 0.9430872 0.000000e+003.800247e-051.144653e-070.05509946 0.00177432609.157221e-079.157221e-076.892314e-04
201309 0.8254115 -0.000278120 4002577 5049 549303 12707 0 14621 0 4569636 0.8759072 0.000000e+003.199598e-030.000000e+000.11700757 0.00278074671.104902e-031.104902e-032.661737e-02
201310 0.8053949 -0.020016620 5009383 16392 553816 16059 145 17648 704 5595650 0.8952281 2.591299e-053.153878e-031.258120e-040.09581872 0.00274409592.903505e-032.929418e-033.186618e-02
201311 0.7880156 -0.017379243 8329407 15911 325733 16016 30 3905 0 8687067 0.9588285 3.453410e-064.495188e-040.000000e+000.03704680 0.00184366021.828120e-031.831573e-031.198835e-02
201312 0.7777810 -0.010234676 6524608 25161 655333 14126 236 1151 0 7219228 0.9037820 3.269048e-051.594353e-040.000000e+000.09061661 0.00195671893.452585e-033.485276e-031.756359e-03
201401 0.7743517 -0.003429302 5552094 85771 517462 9814 11 670 15 6165141 0.9005624 1.784225e-061.086755e-042.433034e-060.08382485 0.00158942031.391047e-021.391225e-021.294781e-03
201402 0.7701717 -0.004179954 8093590 119858 503142 11126 27729 9 16 8727716 0.9273434 3.177120e-031.031198e-061.833240e-060.05764773 0.00127295621.055591e-021.373303e-021.788759e-05
201403 0.7603903 -0.009781380 4911802 148893 472179 19090 1291 1267 3 5551964 0.8846963 2.325303e-042.282075e-045.403493e-070.08481899 0.00343788252.658555e-022.681808e-022.683304e-03
201404 0.7093746 -0.051015775 4679578 158048 352842 21690 1367 708 1369 5212158 0.8978197 2.622714e-041.358363e-042.626551e-040.06756012 0.00389876903.006068e-023.032295e-022.006564e-03
201405 0.7128619 0.003487368 4191296 438638 363230 20036 6335 673 16 5013200 0.8360520 1.263664e-031.342456e-043.191574e-060.07232047 0.00399345738.623295e-028.749661e-021.852821e-03
201406 0.6964598 -0.016402154 9204208 979963 385119 28909 7075 4868 0 10598199 0.8684691 6.675663e-044.593233e-040.000000e+000.03587883 0.00272772769.179748e-029.246505e-021.264025e-02
201407 0.6910405 -0.005419249 4137442 1122558 374054 20569 14826 471 0 5654623 0.7316919 2.621925e-038.329468e-050.000000e+000.06606683 0.00363755461.958985e-011.985204e-011.259176e-03
201408 0.6790128 -0.012027700 3841529 1542154 463427 24487 12372 5091 0 5871597 0.6542562 2.107093e-038.670554e-040.000000e+000.07805985 0.00417041562.605393e-012.626464e-011.098555e-02
201409 0.6425853 -0.036427522 3203817 1131224 443472 21464 1297 5138 0 4799977 0.6674651 2.702096e-041.070422e-030.000000e+000.09132002 0.00447168812.354026e-012.356728e-011.158585e-02
201410 0.6196022 -0.022983148 3227864 1145195 490299 28462 13839 9068 0 4891820 0.6598493 2.829008e-031.853707e-030.000000e+000.09837463 0.00581828442.312751e-012.341041e-011.849484e-02
201411 0.6049853 -0.014616809 6302182 1325029 392051 22689 3077 3819 0 8041951 0.7836633 3.826186e-044.748848e-040.000000e+000.04827585 0.00282133031.643820e-011.647646e-019.741080e-03
201412 0.5866415 -0.018343843 6485558 890292 422950 43950 914 20633 2210 7842750 0.8269495 1.165408e-042.630837e-032.817889e-040.05129795 0.00532211281.134013e-011.135178e-014.878354e-02
201501 0.5762690 -0.010372485 4739487 805057 424032 24808 1018 2155 1 5993384 0.7907865 1.698540e-043.595631e-041.668506e-070.07039045 0.00413906401.341544e-011.343243e-015.082164e-03
201502 0.5655679 -0.010701104 4325628 945894 496314 26183 9981 167 0 5794019 0.7465678 1.722638e-032.882283e-050.000000e+000.08563089 0.00451897031.615309e-011.632535e-013.364805e-04
201503 0.5460412 -0.019526750 3597820 856295 537678 21459 30219 376 0 5013252 0.7176619 6.027824e-037.500122e-050.000000e+000.10717634 0.00428045511.647785e-011.708063e-016.993033e-04
201504 0.5321438 -0.013897348 4870233 918356 531767 25951 7464 40948 0 6346307 0.7674121 1.176117e-036.452256e-030.000000e+000.07733931 0.00408914981.435310e-011.447072e-017.700365e-02
201505 0.5210429 -0.011100891 2488601 1680846 477852 20413 99343 11544 2 4667712 0.5331522 2.128302e-022.473160e-034.284755e-070.09990077 0.00437280623.388176e-013.601006e-012.415811e-02
201506 0.5164983 -0.004544615 5021818 978633 491582 26473 25174 1689 37 6518506 0.7703940 3.861928e-032.591085e-045.676147e-060.07515418 0.00405553051.462696e-011.501315e-013.435846e-03
201507 0.5284056 0.011907284 2362031 808189 596225 17319 4396 2808 1 3783764 0.6242543 1.161806e-037.421182e-042.642871e-070.15683246 0.00457692392.124321e-012.135939e-014.709631e-03
201508 0.5119938 -0.01641181610651414 626137 569214 24237 10199 22 7 11871002 0.8972633 8.591524e-041.853256e-065.896722e-070.04794810 0.00204110825.188593e-025.274508e-023.864979e-05
201509 0.5083907 -0.003603063 5998275 922978 566829 20643 4545 678 46 7508725 0.7988407 6.052958e-049.029496e-056.126207e-060.07539909 0.00274307561.223154e-011.229207e-011.196128e-03
201510 0.4997726 -0.008618152 4955485 704560 549578 21198 20407 33 7 6230821 0.7953181 3.275170e-035.296252e-061.123447e-060.08819785 0.00340099641.098014e-011.130766e-016.004607e-05
201511 0.4885873 -0.011185294 8338012 1525937 615665 39885 52236 1629 5 10519499 0.7926244 4.965636e-031.548553e-044.753078e-070.05837122 0.00379105511.400923e-011.450580e-012.645919e-03
201512 0.4832378 -0.005349461 6780962 2113700 709149 43685 42498 2327 4728 9647496 0.7028727 4.405081e-032.412025e-044.900754e-040.07326481 0.00403804262.146880e-012.190931e-013.281398e-03
201601 0.4830095 -0.000228354 4753096 2834920 597301 49508 242577 221 3 8234825 0.5771945 2.945746e-022.683724e-053.643065e-070.07250670 0.00601166393.148024e-013.442599e-013.699977e-04
201602 0.4844902 0.001480786 5037443 3503742 710388 36601 103807 1544 605 9288174 0.5423502 1.117625e-021.662329e-046.513659e-050.07631683 0.00387546573.660499e-013.772261e-012.173460e-03
201603 0.4945400 0.010049712 5124456 3004104 623005 45217 122240 78 35 8796782 0.5825376 1.389599e-028.866879e-063.978728e-060.07081305 0.00513619643.276043e-013.415003e-011.251996e-04
201604 0.4929242 -0.001615786 3288373 2551455 681104 53920 100350 2317 943 6574852 0.5001440 1.526270e-023.524034e-041.434253e-040.10323989 0.00805751983.728000e-013.880627e-013.401830e-03
201605 0.4836949 -0.009229247 6498847 1699375 888070 74766 182273 151910 0 9161058 0.7093992 1.989650e-021.658215e-020.000000e+000.08035753 0.00816128441.656034e-011.854999e-011.710563e-01
201606 0.4741030 -0.009591949 8942040 1920279 933300 25110 111371 97117 32 11820729 0.7564711 9.421669e-038.215822e-032.707109e-060.07073870 0.00212152741.530285e-011.624501e-011.040576e-01
201607 0.4728511 -0.001251919 3220427 2701252 800596 19184 129617 10045 16 6741459 0.4777048 1.922685e-021.490034e-032.373373e-060.11726705 0.00284330143.814656e-014.006925e-011.254690e-02
201608 0.4896451 0.016794007 4222043 1908414 808776 19100 115306 75690 0 6958333 0.6067607 1.657092e-021.087761e-020.000000e+000.10535368 0.00274491032.576922e-012.742631e-019.358586e-02
201609 0.4864085 -0.003236607 3659346 2206167 784122 47599 213173 15631 0 6697234 0.5463966 3.183001e-022.333949e-030.000000e+000.11474752 0.00710726252.975846e-013.294147e-011.993440e-02
201610 0.4873130 0.000904583 3057192 2945595 791369 27418 41720 4434 0 6821574 0.4481652 6.115891e-036.499966e-040.000000e+000.11535974 0.00401930704.256899e-014.318058e-015.602949e-03
201611 0.4854145 -0.001898554 6126002 3805594 871958 32575 87958 100 0 10836129 0.5653312 8.117105e-039.228388e-060.000000e+000.08045844 0.00300614733.430779e-013.511950e-011.146844e-04
201612 0.4846416 -0.000772895 2788117 2256563 745482 27702 107895 20963 0 5817864 0.4792338 1.854547e-023.603212e-030.000000e+000.12453351 0.00476154133.693225e-013.878680e-012.812006e-02
201701 0.4758655 -0.008776076 2205598 3143946 793066 26228 43700 916 8 6168838 0.3575386 7.083992e-031.484883e-041.296841e-060.12841154 0.00425039535.025656e-015.096496e-011.155011e-03
201702 0.4760932 0.000227658 2820143 2114626 916649 36771 251621 10424 0 5888189 0.4789491 4.273317e-021.770324e-030.000000e+000.15390556 0.00624487433.163969e-013.591301e-011.137186e-02
201703 0.4577122 -0.018380951 7979381 3745192 856575 43399 177145 21087 0 12624547 0.6320529 1.403179e-021.670317e-030.000000e+000.06617964 0.00343766792.826277e-012.966595e-012.461781e-02
201704 0.4572040 -0.000508208 6906938 2706050 892770 42338 197731 12564 0 10548096 0.6548042 1.874566e-021.191115e-030.000000e+000.08344691 0.00401380502.377983e-012.565439e-011.407305e-02
201705 0.4443325 -0.012871497 2959014 1521610 897744 33731 88571 34698 0 5412099 0.5467406 1.636537e-026.411191e-030.000000e+000.15946604 0.00623251722.647843e-012.811497e-013.865022e-02

In [ ]:
head(longitudinal_edits, n=60)

In [18]:
# detach(longitudinal_edits)
attach(longitudinal_edits)

In [65]:
agent_type_regression <- lm(change_of_rmse_with_sign ~ scale(bot_edit) + 
                                                   scale(semi_automated_edit) +
                                                   scale(human_non_bot_like_edit) + 
                                                   scale(anon_non_bot_like_edit) +
                                                   scale(human_bot_like_edit) +
                                                   scale(anon_bot_like_edit)
                                                    
                            
                            
                            
                          );


# scale(semi_automated_bot_like_edit) +
#                             scale(semi_automated_non_bot_like_edit)
# NOTE: When replacing "semi_automated_edit" with the two above, semi_automated_non_bot is significatn with a positive value.
# How do bot-like behaviors influence changes in misalignment

In [66]:
summary(agent_type_regression)


Call:
lm(formula = change_of_rmse_with_sign ~ scale(bot_edit) + scale(semi_automated_edit) + 
    scale(human_non_bot_like_edit) + scale(anon_non_bot_like_edit) + 
    scale(human_bot_like_edit) + scale(anon_bot_like_edit))

Residuals:
      Min        1Q    Median        3Q       Max 
-0.072656 -0.005865  0.001530  0.011268  0.032940 

Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)                    -0.0185186  0.0025801  -7.177  4.4e-09 ***
scale(bot_edit)                -0.0115799  0.0029713  -3.897 0.000307 ***
scale(semi_automated_edit)      0.0059085  0.0047452   1.245 0.219249    
scale(human_non_bot_like_edit)  0.0020586  0.0039898   0.516 0.608291    
scale(anon_non_bot_like_edit)   0.0022041  0.0041836   0.527 0.600771    
scale(human_bot_like_edit)      0.0033201  0.0030385   1.093 0.280114    
scale(anon_bot_like_edit)      -0.0002265  0.0028375  -0.080 0.936705    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01896 on 47 degrees of freedom
Multiple R-squared:  0.4311,	Adjusted R-squared:  0.3584 
F-statistic: 5.935 on 6 and 47 DF,  p-value: 0.0001133

In [63]:
agent_type_regression <- lm(change_of_rmse_with_sign ~ scale(bot_edit_prop) + 
                                                   scale(semi_automated_edit_prop) + 
                                                   scale(anon_non_bot_like_edit_prop) +
                                                   scale(human_bot_like_edit_prop) +
                                                   scale(anon_bot_like_edit_prop) 
                            
                            
                          );

# scale(human_non_bot_like_edit_prop)
#                                                                    scale(semi_automated_bot_like_edit_prop) +
# How do bot-like behaviors influence changes in misalignment

In [64]:
summary(agent_type_regression)


Call:
lm(formula = change_of_rmse_with_sign ~ scale(bot_edit_prop) + 
    scale(semi_automated_edit_prop) + scale(anon_non_bot_like_edit_prop) + 
    scale(human_bot_like_edit_prop) + scale(anon_bot_like_edit_prop))

Residuals:
      Min        1Q    Median        3Q       Max 
-0.087433 -0.007112  0.002645  0.012697  0.027505 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                        -0.0185186  0.0028671  -6.459 4.97e-08 ***
scale(bot_edit_prop)               -0.0017604  0.0095268  -0.185    0.854    
scale(semi_automated_edit_prop)     0.0082234  0.0089027   0.924    0.360    
scale(anon_non_bot_like_edit_prop)  0.0029081  0.0042776   0.680    0.500    
scale(human_bot_like_edit_prop)     0.0032658  0.0030103   1.085    0.283    
scale(anon_bot_like_edit_prop)      0.0003528  0.0033291   0.106    0.916    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02107 on 48 degrees of freedom
Multiple R-squared:  0.2825,	Adjusted R-squared:  0.2078 
F-statistic:  3.78 on 5 and 48 DF,  p-value: 0.005753

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [11]:
summary(lm(bot_edits ~          
                       scale(semi_automated_edits) + 
                       scale(non_bot_edits) + 
                       scale(anon_edits) + 
                       scale(under_five_seconds) +
                       scale(five_to_ten_seconds) +
                       scale(ten_to_twenty_seconds) +
                       scale(twenty_to_one_hundred_seconds) +
                       scale(over_one_hundred_seconds))
)

#VIF is 1.37


Error in eval(expr, envir, enclos): object 'bot_edits' not found
Traceback:

1. summary(lm(bot_edits ~ scale(semi_automated_edits) + scale(non_bot_edits) + 
 .     scale(anon_edits) + scale(under_five_seconds) + scale(five_to_ten_seconds) + 
 .     scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
 .     scale(over_one_hundred_seconds)))
2. lm(bot_edits ~ scale(semi_automated_edits) + scale(non_bot_edits) + 
 .     scale(anon_edits) + scale(under_five_seconds) + scale(five_to_ten_seconds) + 
 .     scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
 .     scale(over_one_hundred_seconds))
3. eval(mf, parent.frame())
4. eval(expr, envir, enclos)
5. stats::model.frame(formula = bot_edits ~ scale(semi_automated_edits) + 
 .     scale(non_bot_edits) + scale(anon_edits) + scale(under_five_seconds) + 
 .     scale(five_to_ten_seconds) + scale(ten_to_twenty_seconds) + 
 .     scale(twenty_to_one_hundred_seconds) + scale(over_one_hundred_seconds), 
 .     drop.unused.levels = TRUE)
6. model.frame.default(formula = bot_edits ~ scale(semi_automated_edits) + 
 .     scale(non_bot_edits) + scale(anon_edits) + scale(under_five_seconds) + 
 .     scale(five_to_ten_seconds) + scale(ten_to_twenty_seconds) + 
 .     scale(twenty_to_one_hundred_seconds) + scale(over_one_hundred_seconds), 
 .     drop.unused.levels = TRUE)
7. eval(predvars, data, env)
8. eval(expr, envir, enclos)

In [64]:
summary(lm(semi_automated_edits ~ scale(bot_edits) +
                                  scale(non_bot_edits) + 
                                  scale(anon_edits) + 
                                  scale(under_five_seconds) +
                                  scale(five_to_ten_seconds) +
                                  scale(ten_to_twenty_seconds) +
                                  scale(twenty_to_one_hundred_seconds) +
                                  scale(over_one_hundred_seconds))
)

#Vif is 2.22


Call:
lm(formula = semi_automated_edits ~ scale(bot_edits) + scale(non_bot_edits) + 
    scale(anon_edits) + scale(under_five_seconds) + scale(five_to_ten_seconds) + 
    scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
    scale(over_one_hundred_seconds))

Residuals:
     Min       1Q   Median       3Q      Max 
-1044662  -356270   -47331   313631  1249851 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                           1248824      86062  14.511  < 2e-16 ***
scale(bot_edits)                       124518     124153   1.003 0.321251    
scale(non_bot_edits)                   110973     195774   0.567 0.573638    
scale(anon_edits)                     -298426     112462  -2.654 0.010967 *  
scale(under_five_seconds)             -130574      96915  -1.347 0.184628    
scale(five_to_ten_seconds)              14901      93456   0.159 0.874035    
scale(ten_to_twenty_seconds)          -199361     110450  -1.805 0.077770 .  
scale(twenty_to_one_hundred_seconds)  1148706     278352   4.127 0.000157 ***
scale(over_one_hundred_seconds)        -28842     275091  -0.105 0.916966    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 632400 on 45 degrees of freedom
Multiple R-squared:  0.7407,	Adjusted R-squared:  0.6946 
F-statistic: 16.07 on 8 and 45 DF,  p-value: 6.723e-11

In [65]:
summary(lm(non_bot_edits ~ scale(bot_edits) +
                           scale(semi_automated_edits) + 
                           scale(anon_edits) + 
                           scale(under_five_seconds) +
                           scale(five_to_ten_seconds) +
                           scale(ten_to_twenty_seconds) +
                           scale(twenty_to_one_hundred_seconds) +
                           scale(over_one_hundred_seconds))
)

#vif is 2.83


Call:
lm(formula = non_bot_edits ~ scale(bot_edits) + scale(semi_automated_edits) + 
    scale(anon_edits) + scale(under_five_seconds) + scale(five_to_ten_seconds) + 
    scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
    scale(over_one_hundred_seconds))

Residuals:
    Min      1Q  Median      3Q     Max 
-221218  -69679    8803   78656  195428 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                            736177      15100  48.753  < 2e-16 ***
scale(bot_edits)                        74850      18990   3.942  0.00028 ***
scale(semi_automated_edits)             16907      29826   0.567  0.57364    
scale(anon_edits)                       22455      20954   1.072  0.28960    
scale(under_five_seconds)              -25282      16930  -1.493  0.14231    
scale(five_to_ten_seconds)              15020      16248   0.924  0.36021    
scale(ten_to_twenty_seconds)           -37006      19295  -1.918  0.06149 .  
scale(twenty_to_one_hundred_seconds)    83598      55969   1.494  0.14225    
scale(over_one_hundred_seconds)        120960      44778   2.701  0.00970 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 111000 on 45 degrees of freedom
Multiple R-squared:  0.8045,	Adjusted R-squared:  0.7697 
F-statistic: 23.15 on 8 and 45 DF,  p-value: 1.477e-13

In [66]:
summary(lm(anon_edits ~ scale(bot_edits) +
                        scale(semi_automated_edits) + 
                        scale(non_bot_edits) +  
                        scale(under_five_seconds) +
                        scale(five_to_ten_seconds) +
                        scale(ten_to_twenty_seconds) +
                        scale(twenty_to_one_hundred_seconds) +
                        scale(over_one_hundred_seconds))
)

#Vif is 1.31


Call:
lm(formula = anon_edits ~ scale(bot_edits) + scale(semi_automated_edits) + 
    scale(non_bot_edits) + scale(under_five_seconds) + scale(five_to_ten_seconds) + 
    scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
    scale(over_one_hundred_seconds))

Residuals:
     Min       1Q   Median       3Q      Max 
-14501.6  -4888.9    452.1   6090.0  15700.9 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                           28898.7     1081.3  26.725  < 2e-16 ***
scale(bot_edits)                       4110.8     1453.4   2.828  0.00696 ** 
scale(semi_automated_edits)           -5289.1     1993.2  -2.654  0.01097 *  
scale(non_bot_edits)                   2612.3     2437.7   1.072  0.28960    
scale(under_five_seconds)              -243.3     1241.5  -0.196  0.84549    
scale(five_to_ten_seconds)              406.3     1173.0   0.346  0.73069    
scale(ten_to_twenty_seconds)          -1396.3     1422.0  -0.982  0.33137    
scale(twenty_to_one_hundred_seconds)  10289.8     3809.0   2.701  0.00970 ** 
scale(over_one_hundred_seconds)       -2965.7     3428.5  -0.865  0.39161    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7946 on 45 degrees of freedom
Multiple R-squared:  0.4841,	Adjusted R-squared:  0.3923 
F-statistic: 5.278 on 8 and 45 DF,  p-value: 0.0001088

In [83]:
summary(lm(under_five_seconds ~ scale(bot_edits) +
                                scale(semi_automated_edits) + 
                                scale(non_bot_edits) + 
                                scale(anon_edits) + 
                                scale(five_to_ten_seconds) +
                                scale(ten_to_twenty_seconds) +
                                scale(twenty_to_one_hundred_seconds) +
                                scale(over_one_hundred_seconds))
)

#Vif is 1.05


Call:
lm(formula = under_five_seconds ~ scale(bot_edits) + scale(semi_automated_edits) + 
    scale(non_bot_edits) + scale(anon_edits) + scale(five_to_ten_seconds) + 
    scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
    scale(over_one_hundred_seconds))

Residuals:
     Min       1Q   Median       3Q      Max 
-4011840 -1512124  -258896  1234102  7378080 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                           5770371     368060  15.678   <2e-16 ***
scale(bot_edits)                       890280     520204   1.711   0.0939 .  
scale(semi_automated_edits)           -963733     715305  -1.347   0.1846    
scale(non_bot_edits)                 -1224838     820170  -1.493   0.1423    
scale(anon_edits)                     -101337     517008  -0.196   0.8455    
scale(five_to_ten_seconds)             295820     397355   0.744   0.4605    
scale(ten_to_twenty_seconds)          -182986     488399  -0.375   0.7097    
scale(twenty_to_one_hundred_seconds)  2116859    1361562   1.555   0.1270    
scale(over_one_hundred_seconds)        880070    1169287   0.753   0.4556    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2705000 on 45 degrees of freedom
Multiple R-squared:  0.2277,	Adjusted R-squared:  0.09041 
F-statistic: 1.659 on 8 and 45 DF,  p-value: 0.1353

In [68]:
summary(lm(five_to_ten_seconds ~ scale(bot_edits) +
                                 scale(semi_automated_edits) + 
                                 scale(non_bot_edits) + 
                                 scale(anon_edits) + 
                                 scale(under_five_seconds) +
                                 scale(ten_to_twenty_seconds) +
                                 scale(twenty_to_one_hundred_seconds) +
                                 scale(over_one_hundred_seconds))
)

#Vif is 1.02


Call:
lm(formula = five_to_ten_seconds ~ scale(bot_edits) + scale(semi_automated_edits) + 
    scale(non_bot_edits) + scale(anon_edits) + scale(under_five_seconds) + 
    scale(ten_to_twenty_seconds) + scale(twenty_to_one_hundred_seconds) + 
    scale(over_one_hundred_seconds))

Residuals:
    Min      1Q  Median      3Q     Max 
-328109 -141792  -36583   55204 1137115 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                            458351      34943  13.117   <2e-16 ***
scale(bot_edits)                       -52513      50365  -1.043    0.303    
scale(semi_automated_edits)             11041      69247   0.159    0.874    
scale(non_bot_edits)                    73051      79026   0.924    0.360    
scale(anon_edits)                       16985      49040   0.346    0.731    
scale(under_five_seconds)               29698      39891   0.744    0.460    
scale(ten_to_twenty_seconds)            60455      45558   1.327    0.191    
scale(twenty_to_one_hundred_seconds)    25061     132640   0.189    0.851    
scale(over_one_hundred_seconds)        -82426     111030  -0.742    0.462    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 256800 on 45 degrees of freedom
Multiple R-squared:  0.1365,	Adjusted R-squared:  -0.01706 
F-statistic: 0.8889 on 8 and 45 DF,  p-value: 0.5335

In [69]:
summary(lm(ten_to_twenty_seconds ~ scale(bot_edits) +
                                   scale(semi_automated_edits) + 
                                   scale(non_bot_edits) + 
                                   scale(anon_edits) + 
                                   scale(under_five_seconds) +
                                   scale(five_to_ten_seconds) +
                                   scale(twenty_to_one_hundred_seconds) +
                                   scale(over_one_hundred_seconds))
)

#vif is 1.22


Call:
lm(formula = ten_to_twenty_seconds ~ scale(bot_edits) + scale(semi_automated_edits) + 
    scale(non_bot_edits) + scale(anon_edits) + scale(under_five_seconds) + 
    scale(five_to_ten_seconds) + scale(twenty_to_one_hundred_seconds) + 
    scale(over_one_hundred_seconds))

Residuals:
    Min      1Q  Median      3Q     Max 
-178237  -43598   -5894   43645  254617 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                            316565      12412  25.504   <2e-16 ***
scale(bot_edits)                        20035      17857   1.122   0.2678    
scale(semi_automated_edits)            -42885      23759  -1.805   0.0778 .  
scale(non_bot_edits)                   -52251      27244  -1.918   0.0615 .  
scale(anon_edits)                      -16947      17259  -0.982   0.3314    
scale(under_five_seconds)               -5333      14234  -0.375   0.7097    
scale(five_to_ten_seconds)              17551      13226   1.327   0.1912    
scale(twenty_to_one_hundred_seconds)    80147      45594   1.758   0.0856 .  
scale(over_one_hundred_seconds)         63035      38551   1.635   0.1090    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 91210 on 45 degrees of freedom
Multiple R-squared:  0.4232,	Adjusted R-squared:  0.3206 
F-statistic: 4.126 on 8 and 45 DF,  p-value: 0.0009311

In [70]:
summary(lm(twenty_to_one_hundred_seconds ~ scale(bot_edits) +
                                           scale(semi_automated_edits) + 
                                           scale(non_bot_edits) + 
                                           scale(anon_edits) + 
                                           scale(under_five_seconds) +
                                           scale(five_to_ten_seconds) +
                                           scale(ten_to_twenty_seconds) +
                                           scale(over_one_hundred_seconds))
)

#vif is 7.33


Call:
lm(formula = twenty_to_one_hundred_seconds ~ scale(bot_edits) + 
    scale(semi_automated_edits) + scale(non_bot_edits) + scale(anon_edits) + 
    scale(under_five_seconds) + scale(five_to_ten_seconds) + 
    scale(ten_to_twenty_seconds) + scale(over_one_hundred_seconds))

Residuals:
   Min     1Q Median     3Q    Max 
-84860 -34319  -1786  27090  95331 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                       444868       5949  74.782  < 2e-16 ***
scale(bot_edits)                  -19322       8185  -2.361 0.022639 *  
scale(semi_automated_edits)        41449      10044   4.127 0.000157 ***
scale(non_bot_edits)               19800      13256   1.494 0.142249    
scale(anon_edits)                  20949       7755   2.701 0.009699 ** 
scale(under_five_seconds)          10349       6656   1.555 0.127016    
scale(five_to_ten_seconds)          1220       6459   0.189 0.850987    
scale(ten_to_twenty_seconds)       13444       7648   1.758 0.085576 .  
scale(over_one_hundred_seconds)    73910      15501   4.768 1.98e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 43720 on 45 degrees of freedom
Multiple R-squared:  0.9293,	Adjusted R-squared:  0.9168 
F-statistic: 73.98 on 8 and 45 DF,  p-value: < 2.2e-16

In [71]:
summary(lm(over_one_hundred_seconds ~ scale(bot_edits) +
                                      scale(semi_automated_edits) + 
                                      scale(non_bot_edits) + 
                                      scale(anon_edits) + 
                                      scale(under_five_seconds) +
                                      scale(five_to_ten_seconds) +
                                      scale(ten_to_twenty_seconds) +
                                      scale(twenty_to_one_hundred_seconds))
)

# vif is 5.28


Call:
lm(formula = over_one_hundred_seconds ~ scale(bot_edits) + scale(semi_automated_edits) + 
    scale(non_bot_edits) + scale(anon_edits) + scale(under_five_seconds) + 
    scale(five_to_ten_seconds) + scale(ten_to_twenty_seconds) + 
    scale(twenty_to_one_hundred_seconds))

Residuals:
   Min     1Q Median     3Q    Max 
-42017 -14227  -1082  12005  56715 

Coefficients:
                                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)                          169959.4     2881.3  58.987  < 2e-16 ***
scale(bot_edits)                      -5017.3     4135.7  -1.213   0.2314    
scale(semi_automated_edits)            -598.7     5710.8  -0.105   0.9170    
scale(non_bot_edits)                  16482.4     6101.6   2.701   0.0097 ** 
scale(anon_edits)                     -3473.8     4015.8  -0.865   0.3916    
scale(under_five_seconds)              2475.3     3288.8   0.753   0.4556    
scale(five_to_ten_seconds)            -2309.3     3110.7  -0.742   0.4617    
scale(ten_to_twenty_seconds)           6083.3     3720.4   1.635   0.1090    
scale(twenty_to_one_hundred_seconds)  42522.2     8918.0   4.768 1.98e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21170 on 45 degrees of freedom
Multiple R-squared:  0.9003,	Adjusted R-squared:  0.8826 
F-statistic:  50.8 on 8 and 45 DF,  p-value: < 2.2e-16

In [ ]:


In [119]:
independent_and_dependent_variables = data.table(bot_edits = bot_edits, semi_automated_edits = semi_automated_edits, non_bot_edits = non_bot_edits, anon_edits = anon_edits, difference_in_alignment_with_previous = difference_in_alignment_with_previous, under_five_seconds = under_five_seconds, five_to_ten_seconds_proportion = five_to_ten_seconds_proportion, ten_to_twenty_proportion = ten_to_twenty_proportion, twenty_to_one_hundred_seconds_proportion = twenty_to_one_hundred_seconds_proportion, over_one_hundred_seconds_proportion = over_one_hundred_seconds_proportion)

In [73]:
edit_type_regression_without_anon <- lm(difference_in_alignment_with_previous ~ scale(bot_edits) + scale(semi_automated_edits) + scale(non_bot_edits))

In [74]:
anon_residuals = data.frame(month=as.Date(paste(yyyymm, "01", sep=""), format="%Y%m%d"), anon_edits = anon_edits, residuals= edit_type_regression_without_anon$residuals)

In [75]:
summary(anon_residuals)


     month              anon_edits      residuals         
 Min.   :2012-12-01   Min.   : 2066   Min.   :-0.0490774  
 1st Qu.:2014-01-08   1st Qu.:24126   1st Qu.:-0.0083774  
 Median :2015-02-15   Median :30338   Median : 0.0004912  
 Mean   :2015-02-15   Mean   :28899   Mean   : 0.0000000  
 3rd Qu.:2016-03-24   3rd Qu.:34526   3rd Qu.: 0.0061725  
 Max.   :2017-05-01   Max.   :47741   Max.   : 0.0702785  

In [76]:
ggplot(anon_residuals, aes(x=month, y=scale(residuals))) + geom_bar(stat="identity") + geom_line(aes(y=scale(anon_edits)))



In [77]:
hist(scale(anon_residuals$residuals)- scale(anon_residuals$anon_edits))



In [78]:
plot(scale(anon_residuals$residuals), scale(anon_residuals$anon_edits))



In [120]:
cor(independent_and_dependent_variables, method="spearman")


bot_editssemi_automated_editsnon_bot_editsanon_editsdifference_in_alignment_with_previousunder_five_secondsfive_to_ten_seconds_proportionten_to_twenty_proportiontwenty_to_one_hundred_seconds_proportionover_one_hundred_seconds_proportion
bot_edits 1.0000000 -0.12531453 0.13825043 0.31846770-0.35765199 0.11347437-0.23209453-0.19794168-0.20045740-0.24208119
semi_automated_edits-0.1253145 1.00000000 0.61521160-0.03545559 0.20716737 0.16747999 0.01993900 0.03903927 0.46138011 0.48040413
non_bot_edits 0.1382504 0.61521160 1.00000000 0.22645321 0.16378883 0.17773966 0.08709739-0.06559939 0.35849057 0.34217648
anon_edits 0.3184677 -0.03545559 0.22645321 1.00000000-0.35544120 0.07093577-0.11202592-0.13497237 0.03563941-0.04082333
difference_in_alignment_with_previous-0.3576520 0.20716737 0.16378883-0.35544120 1.00000000 0.11820088-0.03800267-0.19801791 0.05828092 0.13306651
under_five_seconds 0.1134744 0.16747999 0.17773966 0.07093577 0.11820088 1.00000000-0.56851534-0.71503716-0.63323804-0.58056032
five_to_ten_seconds_proportion-0.2320945 0.01993900 0.08709739-0.11202592-0.03800267-0.56851534 1.00000000 0.50150562 0.48816467 0.41078712
ten_to_twenty_proportion-0.1979417 0.03903927-0.06559939-0.13497237-0.19801791-0.71503716 0.50150562 1.00000000 0.71374119 0.67524300
twenty_to_one_hundred_seconds_proportion-0.2004574 0.46138011 0.35849057 0.03563941 0.05828092-0.63323804 0.48816467 0.71374119 1.00000000 0.91774347
over_one_hundred_seconds_proportion-0.2420812 0.48040413 0.34217648-0.04082333 0.13306651-0.58056032 0.41078712 0.67524300 0.91774347 1.00000000

In [80]:
VIF(edit_type_regression)


2.46868162389359

In [81]:
qqnorm(edit_type_regression$residuals)



In [ ]:


In [ ]:


In [ ]:


In [82]:
names(edit_type_regression)


  1. 'coefficients'
  2. 'residuals'
  3. 'effects'
  4. 'rank'
  5. 'fitted.values'
  6. 'assign'
  7. 'qr'
  8. 'df.residual'
  9. 'xlevels'
  10. 'call'
  11. 'terms'
  12. 'model'

In [37]:
length(longitudinal_edits$human_bot_like_over_human_edit_prop[longitudinal_edits$human_bot_like_over_human_edit_prop > .05])


5

In [26]:
ggplot(longitudinal_edits,
       aes(x=human_bot_like_over_human_edit_prop)) +
geom_histogram(bins=100);



In [25]:
mean(longitudinal_edits$human_bot_like_over_human_edit_prop)


0.0182429058517994

In [27]:
summary(longitudinal_edits$human_bot_like_over_human_edit_prop)


     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
1.789e-05 1.290e-03 5.343e-03 1.824e-02 1.739e-02 1.711e-01